Given three arrays A, B, and C, the task is to find sum of values of all special triplets. A special triplet is defined as a triplet (X, Y, Z) where the condition :
X ? Y and Z ? Y always hold true. The value of each triplet (X, Y, Z) is given by:
f(X, Y, Z) = (X + Y) * (Y + Z)
Note: If a triplet is not ‘special’, f(x, y, z) = 0 for that particular triplet.
Examples:
Input : A = {1, 4, 5}, B = {2, 3}, C = {2, 1, 3} Output : 81 Explanation The special triplets and their values are given below Triplet f(x, y, z) = (x + y) * (y + z) (1, 2, 2) (1 + 2) * (2 + 2) = 12 (1, 2, 1) (1 + 2) * (2 + 1) = 9 (1, 3, 2) (1 + 3) * (3 + 2) = 20 (1, 3, 1) (1 + 3) * (3 + 1) = 16 (1, 3, 3) (1 + 3) * (3 + 3) = 24 ------------------------------------- Sum = 81
Method 1 (Brute Force): We generate all triplets and check if a triplet is a special triplet, we calculate the value of the triplet using f(x, y, z) where (x, y, z) is a special triplet, and add it to the final sum of all such special triplets.
Implementation:
C++
// C++ Program to find sum of values of // all special triplets #include <bits/stdc++.h> using namespace std; /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ int findSplTripletsSum( int a[], int b[], int c[], int p, int q, int r) { int sum = 0; for ( int i = 0; i < p; i++) { for ( int j = 0; j < q; j++) { for ( int k = 0; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code int main() { int A[] = { 1, 4, 5 }; int B[] = { 2, 3 }; int C[] = { 2, 1, 3 }; int p = sizeof (A) / sizeof (A[0]); int q = sizeof (B) / sizeof (B[0]); int r = sizeof (C) / sizeof (C[0]); cout << "Sum of values of all special triplets = " << findSplTripletsSum(A, B, C, p, q, r) << endl; } |
Java
// Java Program to find sum of values of // all special triplets class GFG { /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ static int findSplTripletsSum( int a[], int b[], int c[], int p, int q, int r) { int sum = 0 ; for ( int i = 0 ; i < p; i++) { for ( int j = 0 ; j < q; j++) { for ( int k = 0 ; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code public static void main(String[] args) { int A[] = { 1 , 4 , 5 }; int B[] = { 2 , 3 }; int C[] = { 2 , 1 , 3 }; int p = A.length; int q = B.length; int r = C.length; System.out.print( "Sum of values of all special triplets = " + findSplTripletsSum(A, B, C, p, q, r) + "\n" ); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 Program to find sum of values of # all special triplets # Finding special triplets (x, y, z) where # x belongs to A y belongs to B and z # belongs to C p, q and r are size of # A, B and C respectively def findSplTripletsSum(a, b, c, p, q, r): summ = 0 for i in range (p): for j in range (q): for k in range (r): # (a[i], b[j], c[k]) is special if # a[i] <= b[j] and c[k] <= b[j] if (a[i] < = b[j] and c[k] < = b[j]): # calculate the value of this special # triplet and add sum of all values # of such triplets summ + = (a[i] + b[j]) * (b[j] + c[k]) return summ # Driver Code A = [ 1 , 4 , 5 ] B = [ 2 , 3 ] C = [ 2 , 1 , 3 ] p = len (A) q = len (B) r = len (C) print ( "Sum of values of all special triplets = " , findSplTripletsSum(A, B, C, p, q, r)) # This code is contributed by Mohit kumar 29 |
C#
// C# Program to find sum of values of // all special triplets using System; class GFG { /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ static int findSplTripletsSum( int []a, int []b, int []c, int p, int q, int r) { int sum = 0; for ( int i = 0; i < p; i++) { for ( int j = 0; j < q; j++) { for ( int k = 0; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code public static void Main(String[] args) { int []A = { 1, 4, 5 }; int []B = { 2, 3 }; int []C = { 2, 1, 3 }; int p = A.Length; int q = B.Length; int r = C.Length; Console.Write( "Sum of values of all special triplets = " + findSplTripletsSum(A, B, C, p, q, r) + "\n" ); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // javascript Program to find sum of values of // all special triplets /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ function findSplTripletsSum(a , b , c , p , q , r) { var sum = 0; for (i = 0; i < p; i++) { for (j = 0; j < q; j++) { for (k = 0; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code var A = [ 1, 4, 5 ]; var B = [ 2, 3 ]; var C = [ 2, 1, 3 ]; var p = A.length; var q = B.length; var r = C.length; document.write( "Sum of values of all special triplets = " + findSplTripletsSum(A, B, C, p, q, r) + "\n" ); // This code is contributed by todaysgaurav </script> |
Sum of values of all special triplets = 81
The Time Complexity of this approach is O(P * Q * R) where P, Q, and R are the sizes of the three arrays A, B, and C respectively.
Method 2 (Efficient):
Suppose,
Array A contains elements {a, b, c, d, e},
Array B contains elements {f, g, h, i} and
Array C contains elements {j, k, l, m}.
First, we sort the arrays A and C so that we are able to find the number of elements in arrays A and C that are less than a particular Bi which can be done by applying binary search on each value of Bi.
Let’s suppose that at particular index i, the element of array B is Bi. Let’s also suppose that after we are done sorting A and C, we have elements {a, b, c} belonging to array A which are less than or equal to Bi and elements {j, k} belonging to array C which is also less than Bi.
Lets take Bi = Y from here on. Let, Total Sum of values of all special triplets = S We Know S = ? f(x, y, z) for all possible (x, y, z) Since elements {a, b, c} of Array A and elements {j, k} of array C are less than Y, the Special Triplets formed consists of triplets formed only using these elements with Y always being the second element of every possible triplet All the Special Triplets and their corresponding values are shown below: Triplet f(x, y, z) = (x + y) * (y + z) (a, Y, j) (a + Y)(Y + j) (a, Y, k) (a + Y)(Y + k) (b, Y, j) (b + Y)(Y + j) (b, Y, k) (b + Y)(Y + k) (c, Y, j) (c + Y)(Y + j) (c, Y, k) (c + Y)(Y + k) The sum of these triplets is S = (a + Y)(Y + j) + (a + Y)(Y + k) + (b + Y)(Y + j) + (b + Y)(Y + k) + (c + Y)(Y + j) + (c + Y)(Y + k) Taking (a + X), (b + X) and (c + x) as common terms we have, S = (a + Y)(Y + j + Y + k) + (b + Y)(Y + j + Y + k) + (c + Y)(Y + j + Y + k) Taking (2Y + j + k) common from every term, S = (a + Y + b + Y + c + Y)(2Y + j + k) ? S = (3Y + a + b + c)(2Y + j + k) Thus, S = (N * Y + S1) * (M * Y + S2) where, N = Number of elements in A less than Y, M = Number of elements in C less than Y, S1 = Sum of elements in A less than Y and S2 = Sum of elements in C less than Y
So for every element in B, we can find the number of elements less than it in arrays A and C using Binary Search and the sum of these elements can be found using prefix sums
Implementation:
C++
// C++ Program to find sum of values // of all special triplets #include <bits/stdc++.h> using namespace std; /* Utility function for findSplTripletsSum() finds total sum of values of all special triplets */ int findSplTripletsSumUtil( int A[], int B[], int C[], int prefixSumA[], int prefixSumC[], int p, int q, int r) { int totalSum = 0; // Traverse through whole array B for ( int i = 0; i < q; i++) { // store current element Bi int currentElement = B[i]; // n = number of elements in A less than current // element int n = upper_bound(A, A + p, currentElement) - A; // m = number of elements in C less than current // element int m = upper_bound(C, C + r, currentElement) - C; // if there are Elements neither in A nor C which // are less than or equal to the current element if (n == 0 || m == 0) continue ; /* total sum = (n * currentElement + sum of first n elements in A) + (m * currentElement + sum of first m elements in C) */ totalSum += ((prefixSumA[n - 1] + (n * currentElement)) * (prefixSumC[m - 1] + (m * currentElement))); } return totalSum; } /* Builds prefix sum array for arr of size n and returns a pointer to it */ int * buildPrefixSum( int * arr, int n) { // Dynamically allocate memory tp Prefix Sum Array int * prefixSumArr = new int [n]; // building the prefix sum prefixSumArr[0] = arr[0]; for ( int i = 1; i < n; i++) prefixSumArr[i] = prefixSumArr[i - 1] + arr[i]; return prefixSumArr; } /* Wrapper for Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ int findSplTripletsSum( int A[], int B[], int C[], int p, int q, int r) { int specialTripletSum = 0; // sort arrays A and C sort(A, A + p); sort(C, C + r); // build prefix arrays for A and C int * prefixSumA = buildPrefixSum(A, p); int * prefixSumC = buildPrefixSum(C, r); return findSplTripletsSumUtil(A, B, C, prefixSumA, prefixSumC, p, q, r); } // Driver Code int main() { int A[] = { 1, 4, 5 }; int B[] = { 2, 3 }; int C[] = { 2, 1, 3 }; int p = sizeof (A) / sizeof (A[0]); int q = sizeof (B) / sizeof (B[0]); int r = sizeof (C) / sizeof (C[0]); cout << "Sum of values of all special triplets = " << findSplTripletsSum(A, B, C, p, q, r); } |
Java
// Java Program to find sum of values of // all special triplets import java.io.*; import java.util.*; public class GFG { /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ static int findSplTripletsSum( int []a, int []b, int []c, int p, int q, int r) { int sum = 0 ; for ( int i = 0 ; i < p; i++) { for ( int j = 0 ; j < q; j++) { for ( int k = 0 ; k < r; k++) { // (a[i], b[j], c[k]) is // special if a[i] <= b[j] // and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value // of this special // triplet and add sum // of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code public static void main(String args[]) { int []A = { 1 , 4 , 5 }; int []B = { 2 , 3 }; int []C = { 2 , 1 , 3 }; int p = A.length; int q = B.length; int r = C.length; System.out.print( "Sum of values of all" + " special triplets = " + findSplTripletsSum(A, B, C, p, q, r)); } } // This code is contributed by Manish Shaw // (manishshaw1) |
Python3
# Python3 Program to find sum of values of # all special triplets # Finding special triplets (x, y, z) # where x belongs to A; y belongs to B # and z belongs to C; p, q and r are # size of A, B and C respectively def findSplTripletsSum(a, b, c, p, q, r): sum = 0 for i in range (p): for j in range (q): for k in range (r): # (a[i], b[j], c[k]) is # special if a[i] <= b[j] # and c[k] <= b[j]; if (a[i] < = b[j] and c[k] < = b[j]): # calculate the value # of this special # triplet and add sum # of all values # of such triplets sum + = (a[i] + b[j]) * (b[j] + c[k]) return sum # Driver Code A = [ 1 , 4 , 5 ] B = [ 2 , 3 ] C = [ 2 , 1 , 3 ] p = len (A) q = len (B) r = len (C) print ( "Sum of values of all" , "special triplets =" ,findSplTripletsSum(A, B, C, p, q, r)) # This code is contributed by avanitrachhadiya2155 |
C#
// C# Program to find sum of values of // all special triplets using System; using System.Collections.Generic; using System.Linq; class GFG { /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ static int findSplTripletsSum( int []a, int []b, int []c, int p, int q, int r) { int sum = 0; for ( int i = 0; i < p; i++) { for ( int j = 0; j < q; j++) { for ( int k = 0; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code public static void Main() { int []A = { 1, 4, 5 }; int []B = { 2, 3 }; int []C = { 2, 1, 3 }; int p = A.Length; int q = B.Length; int r = C.Length; Console.WriteLine( "Sum of values of all special triplets = " + findSplTripletsSum(A, B, C, p, q, r)); } } // This code is contributed by // Manish Shaw (manishshaw1) |
Javascript
<script> // Javascript Program to find sum of values of // all special triplets /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ function findSplTripletsSum(a,b,c,p,q,r) { let sum = 0; for (let i = 0; i < p; i++) { for (let j = 0; j < q; j++) { for (let k = 0; k < r; k++) { // (a[i], b[j], c[k]) is // special if a[i] <= b[j] // and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value // of this special // triplet and add sum // of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code let A=[1, 4, 5]; let B=[ 2, 3 ]; let C=[2, 1, 3 ]; let p = A.length; let q = B.length; let r = C.length; document.write( "Sum of values of all" + " special triplets = " + findSplTripletsSum(A, B, C, p, q, r)); // This code is contributed by patel2127 </script> |
Sum of values of all special triplets = 81
Since we need to iterate through the entire array B and for every element apply binary searches in array A and C, the Time Complexity of this approach is O(Q * (logP + logR)) where P, Q, and R are the sizes of the three arrays A, B, and C respectively.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!