Given three arrays A, B, and C, the task is to find sum of values of all special triplets. A special triplet is defined as a triplet (X, Y, Z) where the condition :
X ? Y and Z ? Y always hold true. The value of each triplet (X, Y, Z) is given by:
f(X, Y, Z) = (X + Y) * (Y + Z)
Note: If a triplet is not ‘special’, f(x, y, z) = 0 for that particular triplet.
Examples:
Input : A = {1, 4, 5}, B = {2, 3}, C = {2, 1, 3}
Output : 81
Explanation
The special triplets and their values are given below
Triplet f(x, y, z) = (x + y) * (y + z)
(1, 2, 2) (1 + 2) * (2 + 2) = 12
(1, 2, 1) (1 + 2) * (2 + 1) = 9
(1, 3, 2) (1 + 3) * (3 + 2) = 20
(1, 3, 1) (1 + 3) * (3 + 1) = 16
(1, 3, 3) (1 + 3) * (3 + 3) = 24
-------------------------------------
Sum = 81
Method 1 (Brute Force): We generate all triplets and check if a triplet is a special triplet, we calculate the value of the triplet using f(x, y, z) where (x, y, z) is a special triplet, and add it to the final sum of all such special triplets.
Implementation:
C++
// C++ Program to find sum of values of // all special triplets#include <bits/stdc++.h>using namespace std;/* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */int findSplTripletsSum(int a[], int b[], int c[], int p, int q, int r){ int sum = 0; for (int i = 0; i < p; i++) { for (int j = 0; j < q; j++) { for (int k = 0; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum;}// Driver Codeint main(){ int A[] = { 1, 4, 5 }; int B[] = { 2, 3 }; int C[] = { 2, 1, 3 }; int p = sizeof(A) / sizeof(A[0]); int q = sizeof(B) / sizeof(B[0]); int r = sizeof(C) / sizeof(C[0]); cout << "Sum of values of all special triplets = " << findSplTripletsSum(A, B, C, p, q, r) << endl;} |
Java
// Java Program to find sum of values of // all special tripletsclass GFG{/* Finding special triplets (x, y, z) wherex belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */static int findSplTripletsSum(int a[], int b[], int c[], int p, int q, int r){ int sum = 0; for (int i = 0; i < p; i++) { for (int j = 0; j < q; j++) { for (int k = 0; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum;}// Driver Codepublic static void main(String[] args){ int A[] = { 1, 4, 5 }; int B[] = { 2, 3 }; int C[] = { 2, 1, 3 }; int p = A.length; int q = B.length; int r = C.length; System.out.print("Sum of values of all special triplets = " + findSplTripletsSum(A, B, C, p, q, r) +"\n");}}// This code is contributed by 29AjayKumar |
Python3
# Python3 Program to find sum of values of # all special triplets# Finding special triplets (x, y, z) where# x belongs to A y belongs to B and z # belongs to C p, q and r are size of # A, B and C respectivelydef findSplTripletsSum(a, b, c, p, q, r): summ = 0 for i in range(p): for j in range(q): for k in range(r): # (a[i], b[j], c[k]) is special if # a[i] <= b[j] and c[k] <= b[j] if (a[i] <= b[j] and c[k] <= b[j]): # calculate the value of this special # triplet and add sum of all values # of such triplets summ += (a[i] + b[j]) * (b[j] + c[k]) return summ# Driver CodeA = [1, 4, 5 ]B = [2, 3 ]C = [2, 1, 3 ]p = len(A)q = len(B)r = len(C)print("Sum of values of all special triplets = ", findSplTripletsSum(A, B, C, p, q, r))# This code is contributed by Mohit kumar 29 |
C#
// C# Program to find sum of values of // all special tripletsusing System;class GFG{/* Finding special triplets (x, y, z) wherex belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */static int findSplTripletsSum(int []a, int []b, int []c, int p, int q, int r){ int sum = 0; for (int i = 0; i < p; i++) { for (int j = 0; j < q; j++) { for (int k = 0; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum;}// Driver Codepublic static void Main(String[] args){ int []A = { 1, 4, 5 }; int []B = { 2, 3 }; int []C = { 2, 1, 3 }; int p = A.Length; int q = B.Length; int r = C.Length; Console.Write("Sum of values of all special triplets = " + findSplTripletsSum(A, B, C, p, q, r) +"\n");}}// This code is contributed by PrinciRaj1992 |
Javascript
<script>// javascript Program to find sum of values of // all special triplets /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ function findSplTripletsSum(a , b , c , p , q , r) { var sum = 0; for (i = 0; i < p; i++) { for (j = 0; j < q; j++) { for (k = 0; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code var A = [ 1, 4, 5 ]; var B = [ 2, 3 ]; var C = [ 2, 1, 3 ]; var p = A.length; var q = B.length; var r = C.length; document.write("Sum of values of all special triplets = " + findSplTripletsSum(A, B, C, p, q, r) + "\n");// This code is contributed by todaysgaurav </script> |
Sum of values of all special triplets = 81
The Time Complexity of this approach is O(P * Q * R) where P, Q, and R are the sizes of the three arrays A, B, and C respectively.
Method 2 (Efficient):
Suppose,
Array A contains elements {a, b, c, d, e},
Array B contains elements {f, g, h, i} and
Array C contains elements {j, k, l, m}.
First, we sort the arrays A and C so that we are able to find the number of elements in arrays A and C that are less than a particular Bi which can be done by applying binary search on each value of Bi.
Let’s suppose that at particular index i, the element of array B is Bi. Let’s also suppose that after we are done sorting A and C, we have elements {a, b, c} belonging to array A which are less than or equal to Bi and elements {j, k} belonging to array C which is also less than Bi.
Lets take Bi = Y from here on.
Let, Total Sum of values of all special triplets = S
We Know S = ? f(x, y, z) for all possible (x, y, z)
Since elements {a, b, c} of Array A and elements {j, k} of array C are less than Y,
the Special Triplets formed consists of triplets formed only using these elements
with Y always being the second element of every possible triplet
All the Special Triplets and their corresponding values are shown below:
Triplet f(x, y, z) = (x + y) * (y + z)
(a, Y, j) (a + Y)(Y + j)
(a, Y, k) (a + Y)(Y + k)
(b, Y, j) (b + Y)(Y + j)
(b, Y, k) (b + Y)(Y + k)
(c, Y, j) (c + Y)(Y + j)
(c, Y, k) (c + Y)(Y + k)
The sum of these triplets is
S = (a + Y)(Y + j) + (a + Y)(Y + k) + (b + Y)(Y + j) + (b + Y)(Y + k)
+ (c + Y)(Y + j) + (c + Y)(Y + k)
Taking (a + X), (b + X) and (c + x) as common terms we have,
S = (a + Y)(Y + j + Y + k) + (b + Y)(Y + j + Y + k) + (c + Y)(Y + j + Y + k)
Taking (2Y + j + k) common from every term,
S = (a + Y + b + Y + c + Y)(2Y + j + k)
? S = (3Y + a + b + c)(2Y + j + k)
Thus,
S = (N * Y + S1) * (M * Y + S2)
where,
N = Number of elements in A less than Y,
M = Number of elements in C less than Y,
S1 = Sum of elements in A less than Y and
S2 = Sum of elements in C less than Y
So for every element in B, we can find the number of elements less than it in arrays A and C using Binary Search and the sum of these elements can be found using prefix sums
Implementation:
C++
// C++ Program to find sum of values// of all special triplets#include <bits/stdc++.h>using namespace std;/* Utility function for findSplTripletsSum() finds total sum of values of all special triplets */int findSplTripletsSumUtil(int A[], int B[], int C[], int prefixSumA[], int prefixSumC[], int p, int q, int r){ int totalSum = 0; // Traverse through whole array B for (int i = 0; i < q; i++) { // store current element Bi int currentElement = B[i]; // n = number of elements in A less than current // element int n = upper_bound(A, A + p, currentElement) - A; // m = number of elements in C less than current // element int m = upper_bound(C, C + r, currentElement) - C; // if there are Elements neither in A nor C which // are less than or equal to the current element if (n == 0 || m == 0) continue; /* total sum = (n * currentElement + sum of first n elements in A) + (m * currentElement + sum of first m elements in C) */ totalSum += ((prefixSumA[n - 1] + (n * currentElement)) * (prefixSumC[m - 1] + (m * currentElement))); } return totalSum;}/* Builds prefix sum array for arr of size nand returns a pointer to it */int* buildPrefixSum(int* arr, int n){ // Dynamically allocate memory tp Prefix Sum Array int* prefixSumArr = new int[n]; // building the prefix sum prefixSumArr[0] = arr[0]; for (int i = 1; i < n; i++) prefixSumArr[i] = prefixSumArr[i - 1] + arr[i]; return prefixSumArr;}/* Wrapper for Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */int findSplTripletsSum(int A[], int B[], int C[], int p, int q, int r){ int specialTripletSum = 0; // sort arrays A and C sort(A, A + p); sort(C, C + r); // build prefix arrays for A and C int* prefixSumA = buildPrefixSum(A, p); int* prefixSumC = buildPrefixSum(C, r); return findSplTripletsSumUtil(A, B, C, prefixSumA, prefixSumC, p, q, r);}// Driver Codeint main(){ int A[] = { 1, 4, 5 }; int B[] = { 2, 3 }; int C[] = { 2, 1, 3 }; int p = sizeof(A) / sizeof(A[0]); int q = sizeof(B) / sizeof(B[0]); int r = sizeof(C) / sizeof(C[0]); cout << "Sum of values of all special triplets = " << findSplTripletsSum(A, B, C, p, q, r);} |
Java
// Java Program to find sum of values of // all special tripletsimport java.io.*;import java.util.*;public class GFG { /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ static int findSplTripletsSum(int []a, int []b, int []c, int p, int q, int r) { int sum = 0; for (int i = 0; i < p; i++) { for (int j = 0; j < q; j++) { for (int k = 0; k < r; k++) { // (a[i], b[j], c[k]) is // special if a[i] <= b[j] // and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value // of this special // triplet and add sum // of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code public static void main(String args[]) { int []A = { 1, 4, 5 }; int []B = { 2, 3 }; int []C = { 2, 1, 3 }; int p = A.length; int q = B.length; int r = C.length; System.out.print("Sum of values of all" + " special triplets = " + findSplTripletsSum(A, B, C, p, q, r)); }}// This code is contributed by Manish Shaw// (manishshaw1) |
Python3
# Python3 Program to find sum of values of # all special triplets # Finding special triplets (x, y, z) # where x belongs to A; y belongs to B # and z belongs to C; p, q and r are # size of A, B and C respectively def findSplTripletsSum(a, b, c, p, q, r): sum = 0 for i in range(p): for j in range(q): for k in range(r): # (a[i], b[j], c[k]) is # special if a[i] <= b[j] # and c[k] <= b[j]; if(a[i] <= b[j] and c[k] <= b[j]): # calculate the value # of this special # triplet and add sum # of all values # of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]) return sum# Driver Code A = [1, 4, 5]B = [2, 3 ]C = [2, 1, 3]p = len(A)q = len(B)r = len(C)print("Sum of values of all","special triplets =",findSplTripletsSum(A, B, C, p, q, r))# This code is contributed by avanitrachhadiya2155 |
C#
// C# Program to find sum of values of // all special tripletsusing System;using System.Collections.Generic;using System.Linq;class GFG { /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ static int findSplTripletsSum(int []a, int []b, int []c, int p, int q, int r) { int sum = 0; for (int i = 0; i < p; i++) { for (int j = 0; j < q; j++) { for (int k = 0; k < r; k++) { // (a[i], b[j], c[k]) is special if // a[i] <= b[j] and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value of this special // triplet and add sum of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code public static void Main() { int []A = { 1, 4, 5 }; int []B = { 2, 3 }; int []C = { 2, 1, 3 }; int p = A.Length; int q = B.Length; int r = C.Length; Console.WriteLine("Sum of values of all special triplets = " + findSplTripletsSum(A, B, C, p, q, r)); }}// This code is contributed by // Manish Shaw (manishshaw1) |
Javascript
<script>// Javascript Program to find sum of values of // all special triplets /* Finding special triplets (x, y, z) where x belongs to A; y belongs to B and z belongs to C; p, q and r are size of A, B and C respectively */ function findSplTripletsSum(a,b,c,p,q,r) { let sum = 0; for (let i = 0; i < p; i++) { for (let j = 0; j < q; j++) { for (let k = 0; k < r; k++) { // (a[i], b[j], c[k]) is // special if a[i] <= b[j] // and c[k] <= b[j]; if (a[i] <= b[j] && c[k] <= b[j]) { // calculate the value // of this special // triplet and add sum // of all values // of such triplets sum += (a[i] + b[j]) * (b[j] + c[k]); } } } } return sum; } // Driver Code let A=[1, 4, 5]; let B=[ 2, 3 ]; let C=[2, 1, 3 ]; let p = A.length; let q = B.length; let r = C.length; document.write("Sum of values of all" + " special triplets = " + findSplTripletsSum(A, B, C, p, q, r));// This code is contributed by patel2127</script> |
Sum of values of all special triplets = 81
Since we need to iterate through the entire array B and for every element apply binary searches in array A and C, the Time Complexity of this approach is O(Q * (logP + logR)) where P, Q, and R are the sizes of the three arrays A, B, and C respectively.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
