Friday, January 24, 2025
Google search engine
HomeData Modelling & AISum of multiples of Array elements within a given range

Sum of multiples of Array elements within a given range [L, R]

Given an array arr[] of positive integers and two integers L and R, the task is to find the sum of all multiples of the array elements in the range [L, R].

Examples: 

Input: arr[] = {2, 7, 3, 8}, L = 7, R = 20 
Output: 197 
Explanation: 
In the range 7 to 20: 
Sum of multiples of 2: 8 + 10 + 12 + 14 + 16 + 18 + 20 = 98 
Sum of multiples of 7: 7 + 14 = 21 
Sum of multiples of 3: 9 + 12 + 15 + 18 = 54 
Sum of multiples of 8: 8 + 16 = 24 
Total sum of all multiples = 98 + 21 + 54 + 24 = 197

Input: arr[] = {5, 6, 7, 8, 9}, L = 39, R = 100 
Output: 3278 

Naive Approach: The naive idea is for each element in the given array arr[] find the multiple of the element in the range [L, R] and print the sum of all the multiples.

Time Complexity: O(N*(L-R)) 
Auxiliary Space: O(1)

Efficient Approach: To optimize the above naive approach we will use the concept discussed below: 

  1. For any integer X, the number of multiples of X till any integer Y is given by Y/X.
  2. Let N = Y/X 
    Then, the sum of all the above multiple is given by X*N*(N-1)/2.

For Example: 

For X = 2 and Y = 12 
Sum of multiple is: 
=> 2 + 4 + 6 + 8 + 10 + 12 
=> 2*(1 + 2 + 3 + 4 + 5 + 6) 
=> 2*(6*5)/2 
=> 20. 

Using the above concept the problem can be solved using the below steps: 

  1. Calculate the sum of all multiples of arr[i] up to R using the above-discussed formula.
  2. Calculate the sum of all multiples of arr[i] up to L – 1 using the above-discussed formula.
  3. Subtract the above two values in the above steps to get the sum of all multiples between ranges [L, R].
  4. Repeat the above process for all the elements and print the sum.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of all
// multiples of N up to K
int calcSum(int k, int n)
{
    // Calculate the sum
    int value = (k * n * (n
                          + 1))
                / 2;
    // Return the sum
    return value;
}
 
// Function to find the total sum
int findSum(int* a, int n, int L, int R)
{
    int sum = 0;
    for (int i = 0; i < n; i++) {
 
        // Calculating sum of multiples
        // for each element
 
        // If L is divisible by a[i]
        if (L % a[i] == 0 && L != 0) {
            sum += calcSum(a[i], R / a[i])
                   - calcSum(a[i],
                             (L - 1) / a[i]);
        }
 
        // Otherwise
        else {
            sum += calcSum(a[i], R / a[i])
                   - calcSum(a[i], L / a[i]);
        }
    }
 
    // Return the final sum
    return sum;
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 2, 7, 3, 8 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Given range
    int L = 7;
    int R = 20;
 
    // Function Call
    cout << findSum(arr, N, L, R);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to find the sum of
// all multiples of N up to K
static int calcSum(int k, int n)
{
     
    // Calculate the sum
    int value = (k * n * (n + 1)) / 2;
     
    // Return the sum
    return value;
}
 
// Function to find the total sum
static int findSum(int[] a, int n,
                   int L, int R)
{
    int sum = 0;
    for(int i = 0; i < n; i++)
    {
        
       // Calculating sum of multiples
       // for each element
        
       // If L is divisible by a[i]
       if (L % a[i] == 0 && L != 0)
       {
           sum += calcSum(a[i], R / a[i]) -
                  calcSum(a[i], (L - 1) / a[i]);
       }
        
       // Otherwise
       else
       {
           sum += calcSum(a[i], R / a[i]) -
                  calcSum(a[i], L / a[i]);
       }
    }
 
    // Return the final sum
    return sum;
}
 
// Driver Code
public static void main (String[] args)
{
     
    // Given array arr[]
    int arr[] = { 2, 7, 3, 8 };
 
    int N = arr.length;
 
    // Given range
    int L = 7;
    int R = 20;
 
    // Function Call
    System.out.println(findSum(arr, N, L, R));
}
}
 
// This code is contributed by shubhamsingh10


Python3




# Python3 program for the above approach
 
# Function to find the sum of
# all multiples of N up to K
def calcSum(k, n):
 
    # Calculate the sum
    value = (k * n * (n + 1)) // 2
     
    # Return the sum
    return value
     
# Function to find the total sum
def findSum(a, n, L, R):
 
    sum = 0
    for i in range(n):
         
        # Calculating sum of multiples
        # for each element
         
        # If L is divisible by a[i]
        if (L % a[i] == 0 and L != 0):
            sum += (calcSum(a[i], R // a[i]) -
                    calcSum(a[i], (L - 1) // a[i]))
         
        # Otherwise
        else:
            sum += (calcSum(a[i], R // a[i]) -
                    calcSum(a[i], L // a[i]))
     
    # Return the final sum
    return sum;
 
# Driver code
if __name__=="__main__":
     
    # Given array arr[]
    arr = [ 2, 7, 3, 8 ]
 
    N = len(arr)
 
    # Given range
    L = 7
    R = 20
 
    # Function call
    print(findSum(arr, N, L, R))    
 
# This code is contributed by rutvik_56


C#




// C# program for the above approach
using System;
class GFG{
      
// Function to find the sum of
// all multiples of N up to K
static int calcSum(int k, int n)
{
      
    // Calculate the sum
    int value = (k * n * (n + 1)) / 2;
      
    // Return the sum
    return value;
}
  
// Function to find the total sum
static int findSum(int[] a, int n,
                   int L, int R)
{
    int sum = 0;
    for(int i = 0; i < n; i++)
    {
         
       // Calculating sum of multiples
       // for each element
         
       // If L is divisible by a[i]
       if (L % a[i] == 0 && L != 0)
       {
           sum += calcSum(a[i], R / a[i]) -
                  calcSum(a[i], (L - 1) / a[i]);
       }
         
       // Otherwise
       else
       {
           sum += calcSum(a[i], R / a[i]) -
                  calcSum(a[i], L / a[i]);
       }
    }
  
    // Return the final sum
    return sum;
}
  
// Driver Code
public static void Main (string[] args)
{
      
    // Given array arr[]
    int []arr = new int[]{ 2, 7, 3, 8 };
  
    int N = arr.Length;
  
    // Given range
    int L = 7;
    int R = 20;
  
    // Function Call
    Console.Write(findSum(arr, N, L, R));
}
}
  
// This code is contributed by Ritik Bansal


Javascript




<script>
// Javascript implementation for the above approach
 
// Function to find the sum of
// all multiples of N up to K
function calcSum(k, n)
{
     
    // Calculate the sum
    let value = (k * n * (n + 1)) / 2;
     
    // Return the sum
    return value;
}
 
// Function to find the total sum
function findSum(a, n, L, R)
{
    let sum = 0;
    for(let i = 0; i < n; i++)
    {
        
       // Calculating sum of multiples
       // for each element
        
       // If L is divisible by a[i]
       if (L % a[i] == 0 && L != 0)
       {
           sum += calcSum(a[i], Math.floor(R / a[i])) -
                  calcSum(a[i], Math.floor((L - 1) / a[i]));
       }
        
       // Otherwise
       else
       {
           sum += calcSum(a[i], Math.floor(R / a[i])) -
                  calcSum(a[i], Math.floor(L / a[i]));
       }
    }
 
    // Return the final sum
    return sum;
}
 
    // Driver Code
     
    // Given array arr[]
    let arr = [ 2, 7, 3, 8 ];
 
    let N = arr.length;
 
    // Given range
    let L = 7;
    let R = 20;
 
    // Function Call
   document.write(findSum(arr, N, L, R));
         
</script>


Output: 

197

 

Time Complexity: O(N), where N is the number of elements in the given array. 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments