Sunday, October 12, 2025
HomeData Modelling & AISum of minimum element of all sub-sequences of a sorted array

Sum of minimum element of all sub-sequences of a sorted array

Given a sorted array A of n integers. The task is to find the sum of the minimum of all possible subsequences of A.
Note: Considering there will be no overflow of numbers.

Examples: 

Input: A = [1, 2, 4, 5] 
Output: 29 
Subsequences are [1], [2], [4], [5], [1, 2], [1, 4], [1, 5], [2, 4], [2, 5], [4, 5] [1, 2, 4], [1, 2, 5], [1, 4, 5], [2, 4, 5], [1, 2, 4, 5] 
Minimums are 1, 2, 4, 5, 1, 1, 1, 2, 2, 4, 1, 1, 1, 2, 1. 
Sum is 29
Input: A = [1, 2, 3] 
Output: 11  

Approach: The Naive approach is to generate all possible subsequences, find their minimum and add them to the result. 
Efficient Approach: It is given that the array is sorted, so observe that the minimum element occurs 2n-1 times, the second minimum occurs 2n-2 times, and so on… Let’s take an example: 

arr[] = {1, 2, 3} 
Subsequences are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} 
Minimum of each subsequence: {1}, {2}, {3}, {1}, {1}, {2}, {1}. 
where 
1 occurs 4 times i.e. 2 n-1 where n = 3. 
2 occurs 2 times i.e. 2n-2 where n = 3. 
3 occurs 1 times i.e. 2n-3 where n = 3.

So, traverse the array and add current element i.e. arr[i]* pow(2, n-1-i) to the sum.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum
// of minimum of all subsequence
int findMinSum(int arr[], int n)
{
 
    int occ = n - 1, sum = 0;
    for (int i = 0; i < n; i++) {
        sum += arr[i] * pow(2, occ);
        occ--;
    }
 
    return sum;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findMinSum(arr, n);
 
    return 0;
}


Java




// Java implementation of the above approach
class GfG
{
 
// Function to find the sum
// of minimum of all subsequence
static int findMinSum(int arr[], int n)
{
 
    int occ = n - 1, sum = 0;
    for (int i = 0; i < n; i++)
    {
        sum += arr[i] * (int)Math.pow(2, occ);
        occ--;
    }
 
    return sum;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 4, 5 };
    int n = arr.length;
 
    System.out.println(findMinSum(arr, n));
}
}
 
// This code is contributed by Prerna Saini


Python3




# Python3 implementation of the
# above approach
 
# Function to find the sum
# of minimum of all subsequence
def findMinSum(arr, n):
 
    occ = n - 1
    Sum = 0
    for i in range(n):
        Sum += arr[i] * pow(2, occ)
        occ -= 1
     
    return Sum
 
# Driver code
arr = [1, 2, 4, 5]
n = len(arr)
 
print(findMinSum(arr, n))
 
# This code is contributed
# by mohit kumar


C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
// Function to find the sum
// of minimum of all subsequence
static int findMinSum(int []arr, int n)
{
 
    int occ = n - 1, sum = 0;
    for (int i = 0; i < n; i++)
    {
        sum += arr[i] *(int) Math.Pow(2, occ);
        occ--;
    }
 
    return sum;
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 1, 2, 4, 5 };
    int n = arr.Length;
 
    Console.WriteLine( findMinSum(arr, n));
}
}
// This code is contributed by Arnab Kundu


PHP




<?php
// PHP implementation of the
// above approach
 
// Function to find the sum
// of minimum of all subsequence
function findMinSum($arr, $n)
{
    $occ1 = ($n);
    $occ = $occ1 - 1;
    $Sum = 0;
    for ($i = 0; $i < $n; $i++)
    {
        $Sum += $arr[$i] * pow(2, $occ);
        $occ -= 1;
    }
    return $Sum;
}
 
// Driver code
$arr = array(1, 2, 4, 5);
$n = count($arr);
 
echo findMinSum($arr, $n);
 
// This code is contributed
// by Srathore
?>


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to find the sum
// of minimum of all subsequence
function findMinSum(arr, n)
{
 
    var occ = n - 1, sum = 0;
    for (var i = 0; i < n; i++) {
        sum += arr[i] * Math.pow(2, occ);
        occ--;
    }
 
    return sum;
}
 
// Driver code
var arr = [ 1, 2, 4, 5 ];
var n = arr.length;
document.write( findMinSum(arr, n));
 
</script>


Output: 

29

 

Time Complexity: O(nlogn)

Auxiliary Space: O(1)

Note: To find the Sum of maximum element of all subsequences in a sorted array, just traverse the array in reverse order and apply the same formula for Sum.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32353 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6721 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11943 POSTS0 COMMENTS
Shaida Kate Naidoo
6841 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6797 POSTS0 COMMENTS
Umr Jansen
6798 POSTS0 COMMENTS