Given a sorted array A of n integers. The task is to find the sum of the minimum of all possible subsequences of A.
Note: Considering there will be no overflow of numbers.
Examples:
Input: A = [1, 2, 4, 5]
Output: 29
Subsequences are [1], [2], [4], [5], [1, 2], [1, 4], [1, 5], [2, 4], [2, 5], [4, 5] [1, 2, 4], [1, 2, 5], [1, 4, 5], [2, 4, 5], [1, 2, 4, 5]
Minimums are 1, 2, 4, 5, 1, 1, 1, 2, 2, 4, 1, 1, 1, 2, 1.
Sum is 29
Input: A = [1, 2, 3]
Output: 11
Approach: The Naive approach is to generate all possible subsequences, find their minimum and add them to the result.
Efficient Approach: It is given that the array is sorted, so observe that the minimum element occurs 2n-1 times, the second minimum occurs 2n-2 times, and so on… Let’s take an example:
arr[] = {1, 2, 3}
Subsequences are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
Minimum of each subsequence: {1}, {2}, {3}, {1}, {1}, {2}, {1}.
where
1 occurs 4 times i.e. 2 n-1 where n = 3.
2 occurs 2 times i.e. 2n-2 where n = 3.
3 occurs 1 times i.e. 2n-3 where n = 3.
So, traverse the array and add current element i.e. arr[i]* pow(2, n-1-i) to the sum.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to find the sum // of minimum of all subsequence int findMinSum( int arr[], int n) { int occ = n - 1, sum = 0; for ( int i = 0; i < n; i++) { sum += arr[i] * pow (2, occ); occ--; } return sum; } // Driver code int main() { int arr[] = { 1, 2, 4, 5 }; int n = sizeof (arr) / sizeof (arr[0]); cout << findMinSum(arr, n); return 0; } |
Java
// Java implementation of the above approach class GfG { // Function to find the sum // of minimum of all subsequence static int findMinSum( int arr[], int n) { int occ = n - 1 , sum = 0 ; for ( int i = 0 ; i < n; i++) { sum += arr[i] * ( int )Math.pow( 2 , occ); occ--; } return sum; } // Driver code public static void main(String[] args) { int arr[] = { 1 , 2 , 4 , 5 }; int n = arr.length; System.out.println(findMinSum(arr, n)); } } // This code is contributed by Prerna Saini |
Python3
# Python3 implementation of the # above approach # Function to find the sum # of minimum of all subsequence def findMinSum(arr, n): occ = n - 1 Sum = 0 for i in range (n): Sum + = arr[i] * pow ( 2 , occ) occ - = 1 return Sum # Driver code arr = [ 1 , 2 , 4 , 5 ] n = len (arr) print (findMinSum(arr, n)) # This code is contributed # by mohit kumar |
C#
// C# implementation of the above approach using System; class GFG { // Function to find the sum // of minimum of all subsequence static int findMinSum( int []arr, int n) { int occ = n - 1, sum = 0; for ( int i = 0; i < n; i++) { sum += arr[i] *( int ) Math.Pow(2, occ); occ--; } return sum; } // Driver code public static void Main(String []args) { int []arr = { 1, 2, 4, 5 }; int n = arr.Length; Console.WriteLine( findMinSum(arr, n)); } } // This code is contributed by Arnab Kundu |
PHP
<?php // PHP implementation of the // above approach // Function to find the sum // of minimum of all subsequence function findMinSum( $arr , $n ) { $occ1 = ( $n ); $occ = $occ1 - 1; $Sum = 0; for ( $i = 0; $i < $n ; $i ++) { $Sum += $arr [ $i ] * pow(2, $occ ); $occ -= 1; } return $Sum ; } // Driver code $arr = array (1, 2, 4, 5); $n = count ( $arr ); echo findMinSum( $arr , $n ); // This code is contributed // by Srathore ?> |
Javascript
<script> // Javascript implementation of the above approach // Function to find the sum // of minimum of all subsequence function findMinSum(arr, n) { var occ = n - 1, sum = 0; for ( var i = 0; i < n; i++) { sum += arr[i] * Math.pow(2, occ); occ--; } return sum; } // Driver code var arr = [ 1, 2, 4, 5 ]; var n = arr.length; document.write( findMinSum(arr, n)); </script> |
29
Time Complexity: O(nlogn)
Auxiliary Space: O(1)
Note: To find the Sum of maximum element of all subsequences in a sorted array, just traverse the array in reverse order and apply the same formula for Sum.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!