Thursday, January 16, 2025
Google search engine
HomeData Modelling & AISum of fourth power of first n even natural numbers

Sum of fourth power of first n even natural numbers

Write a program to find the sum of fourth power of first n even natural numbers. 
24 + 44 + 64 + 84 + 104 +………+2n4 
Examples: 

Input:   3
Output:  1568
24 +44 +64 = 1568

Input:   6
Output:  36400
24 + 44 + 64 + 84 + 104 + 124 

 

Naive Approach :- In this Simple finding the fourth powers of the first n even natural numbers is iterate a loop from 1 to n time. Every i’th iteration store in variable and continue till (i!=n). This takes a O(N) Time Complexity.
 

C++




// CPP Program to find the sum of fourth powers of
// first n even natural numbers
#include <bits/stdc++.h>
using namespace std;
 
// calculate the sum of fourth power of first n even
// natural numbers
long long int evenPowerSum(int n)
{
    long long int sum = 0;
    for (int i = 1; i <= n; i++) {
 
        // made even number
        int j = 2 * i;
        sum = sum + (j * j * j * j);
    }
    return sum;
}
 
// Driven Program
int main()
{
    int n = 5;
    cout << evenPowerSum(n) << endl;
    return 0;
}


Java




// Java Program to find the sum of fourth powers of
// first n even natural numbers
 
import java.io.*;
 
class GFG {
     
    // calculate the sum of fourth power of first
    // n even natural numbers
    static long evenPowerSum(int n)
    {
        long sum = 0;
        for (int i = 1; i <= n; i++)
        {
     
            // made even number
            int j = 2 * i;
            sum = sum + (j * j * j * j);
        }
         
        return sum;
    }
 
    // Driven Program
    public static void main (String[] args) {
         
        int n = 5;
        System.out.println(evenPowerSum(n));
    }
}
 
/*This code is contributed by vt_m.*/


Python3




# Python3 Program to find
# the sum of fourth powers of
# first n even natural numbers
 
# calculate the sum of fourth
# power of first n even
# natural numbers
def evenPowerSum(n):
    sum = 0;
    for i in range(1, n + 1):
         
        # made even number
        j = 2 * i;
        sum = sum + (j * j * j * j);
    return sum;
 
# Driver Code
n = 5;
print(evenPowerSum(n));
 
# This is contributed by mits.


C#




// C# Program to find the sum of fourth powers of
// first n even natural numbers
using System;
 
class GFG {
 
    // calculate the sum of fourth power of
    // first n even natural numbers
    static long evenPowerSum(int n)
    {
         
        long sum = 0;
        for (int i = 1; i <= n; i++) {
 
            // made even number
            int j = 2 * i;
            sum = sum + (j * j * j * j);
        }
         
        return sum;
    }
 
    // Driven Program
    public static void Main()
    {
        int n = 5;
         
        Console.Write(evenPowerSum(n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP Program to find the
// sum of fourth powers of
// first n even natural numbers
 
// calculate the sum of
// fourth power of first
// n even natural numbers
function evenPowerSum($n)
{
    $sum = 0;
    for ($i = 1; $i <= $n; $i++)
    {
 
        // made even number
        $j = 2 * $i;
        $sum = $sum + ($j * $j * $j * $j);
    }
    return $sum;
}
 
// Driver Code
$n = 5;
echo(evenPowerSum($n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// JavaScript Program to find the sum of fourth powers of
// first n even natural numbers
 
// calculate the sum of fourth power of first n even
// natural numbers
function evenPowerSum( n)
{
    let sum = 0;
    for (let i = 1; i <= n; i++)
    {
 
        // made even number
        let j = 2 * i;
        sum = sum + (j * j * j * j);
    }
    return sum;
}
 
// Driven Program
    let n = 5;
     document.write(evenPowerSum(n));
      
// This code is contributed by Rajput-Ji
 
</script>


Output

15664

Time Complexity: O(n)
Auxiliary Space: O(1)

Efficient Approach :- An efficient solution is to use direct mathematical formula which is derived below, This takes only O(1) Time Complexity.
 

Sum of fourth power of first n even natural number = 8*(n*(n+1)*(2*n+1)(3*n2+3*n -1))/15 
How does this formula work? 
Sum of fourth power of natural numbers is = (n(n+1)(2n+1)(3n2+3n-1))/30 
we need even natural number so we multiply each term 24 
= 24(14 + 24 + 34 + ………… +n4
= (24 + 44 + 64 + ………… +2n4
= 24*(sum of fourth power natural number) 
= 16*(n*(n+1)*(2*n+1)(3*n2+3*n -1))/30 
= 8*(n*(n+1)*(2*n+1)(3*n2+3*n -1))/15 

 

C++




// CPP Program to find the sum of fourth powers of
// first n even natural numbers
#include <bits/stdc++.h>
using namespace std;
 
// calculate the sum of fourth power of first n
// even natural numbers
long long int evenPowerSum(int n)
{
    return (8 * n * (n + 1) * (2 * n + 1) *
          (3 * n * n + 3 * n - 1)) / 15;
}
 
// Driven Program
int main()
{
    int n = 4;
    cout << evenPowerSum(n) << endl;
    return 0;
}


Java




// JAVA Program to find the sum of fourth powers of
// first n even natural numbers
 
import java.io.*;
 
class GFG {
         
    // calculate the sum of fourth power of first n
    // even natural numbers
    static long evenPowerSum(int n)
    {
        return (8 * n * (n + 1) * (2 * n + 1) *
                   (3 * n * n + 3 * n - 1)) / 15;
    }
     
    // Driven Program
    public static void main (String[] args) {
         
        int n = 4;
        System.out.println(evenPowerSum(n));
    }
}
 
/* This code is contributed by vt_m. */


Python3




# Python3 Program to find
# the sum of fourth powers
# of first n even natural
# numbers
 
# calculate the sum of
# fourth power of first n
# even natural numbers
def evenPowerSum(n):
    return (8 * n * (n + 1) *
           (2 * n + 1) * (3 *
            n * n + 3 * n - 1)) / 15;
 
# Driver Code
n = 4;
print (int(evenPowerSum(n)));
 
# This code is contributed by mits


C#




// C# Program to find the sum of fourth powers of
// first n even natural numbers
 
using System;
 
class GFG {
 
    // calculate the sum of fourth power of first n
    // even natural numbers
    static long evenPowerSum(int n)
    {
        return (8 * n * (n + 1) * (2 * n + 1) *
                     (3 * n * n + 3 * n - 1)) / 15;
    }
 
    // Driven Program
    public static void Main()
    {
        int n = 4;
         
        Console.Write(evenPowerSum(n));
    }
}
 
/* This code is contributed by vt_m.*/


PHP




<?php
// PHP Program to find the
// sum of fourth powers of
// first n even natural numbers
 
// calculate the sum of
// fourth power of first n
// even natural numbers
function evenPowerSum($n)
{
    return (8 * $n * ($n + 1) *
           (2 * $n + 1) *
           (3 * $n * $n + 3 *
            $n - 1)) / 15;
}
 
// Driver Code
$n = 4;
echo(evenPowerSum($n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// Javascript Program to find the sum of fourth powers of
// first n even natural numbers   
 
// calculate the sum of fourth power of first n
// even natural numbers
    function evenPowerSum(n)
    {
        return (8 * n * (n + 1) * (2 * n + 1)
        * (3 * n * n + 3 * n - 1)) / 15;
    }
 
    // Driven Program
     
 
        var n = 4;
        document.write(evenPowerSum(n));
 
// This code is contributed by Rajput-Ji
 
</script>


Output

5664

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments