Thursday, January 9, 2025
Google search engine
HomeData Modelling & AISum of floor division of all pairs from given array

Sum of floor division of all pairs from given array

Given an array arr[] of size N, the task is to find the sum of the floor value of (arr[i] / arr[j]) for all pairs of indices (i, j).

Examples:

Input: arr[] = { 1, 2, 3 } 
Output:
Explanation: 
Sum = (arr[i] / arr[j]) (a[0] / a[0]) + (a[0] / a[1]) + (a[0] / a[2]) + (a[1] / a[1]) + (a[1] / a[2]) + (a[2] / a[2]) + (a[1] / a[0]) + (a[2] / a[0]) + (a[2] / a[1]) = 1 + 0 + 0 + 1 + 0 + 1 + 2 + 3 + 1 = 9 
Therefore, the required output is 9.

Input: arr[] = { 4, 2, 5, 6 } 
Output: 14

Naive Approach: The simplest approach to solve this problem is to generate all possible pairs of the array and for each pair, increment the result by the floor value of (arr[i] / arr[j]). Finally, print the result obtained. 

Time Complexity: O(N2) 
Auxiliary Space: O(N)

Efficient Approach: The above approach can be optimized based on the following observation:

If a sequence is X, X + 1, …, 2 * X – 1, 2 * X, …., 3 * X – 1 
(X) / X + (X + 1) / X + … + (2 * X – 1) / X + (2 * X) / X + … + (3 * X – 1) / X 
= 1 + 1 + … + 1 + 2 + … + 2 
For the first X consecutive numbers, the floor value of (X + i) / X = 1 
For the next X consecutive numbers, the floor value of (2 * X + i) / X = 2 
and so on… 

Follow the steps below to solve the problem:

  • Initialize an array, say freq[], to store the frequency of array elements.
  • Initialize an array, say preFreq[], to store the prefix sum of count[] array.
  • preFreq[j] – preFreq[i] stores the count of array elements whose values lies in the range [i, j].
  • Find the largest element in the array say, Max.
  • Iterate over the range [1, Max]. For every ith value, count the array elements whose value lies in the range [i, j], using the preFreq[] array, where j is a multiple of i and increment the result by frequency[i] * (preFreq[j – 1] – preFreq[j – i – 1]) * (j / i – 1).
  • Finally, print the result obtained.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Stores the maximum value of
// an array element
const int N = 3e5;
  
// Function to find the sum of
// floor(a[i]/a[j]) of all pairs (i, j)
void getFloorSum(int arr[], int n)
{
    // Stores frequency of
    // array element
    int freq[N] = { 0 };
  
    // Stores prefix sum
    // array of frequency[]
    int preFreq[N] = { 0 };
  
    // Traverse the array
    for (int i = 0; i < n; i++) {
  
        // Update frequency
        // of arr[i]
        freq[arr[i]]++;
    }
  
    // Compute the prefix sum
    // of frequency[]
    for (int i = 1; i < N; i++) {
        preFreq[i]
            = preFreq[i - 1] + freq[i];
    }
  
    // Stores the sum of floor(a[i]/a[j])
    // of all pairs (i, j)
    int ans = 0;
  
    // Iterate over the range [1, Max]
    for (int i = 1; i <= N; i++) {
  
        // Find the count of numbers in
        // the range [i * K, i * (K + 1))
        // and update the result
        for (int j = i; j <= N; j += i) {
  
            // Stores count of numbers
            // in range[j - i - 1, j - 1]
            int X = (preFreq[j - 1]
                     - preFreq[j - i - 1]);
  
            // Update ans
            ans += X * (j / i - 1) * freq[i];
        }
    }
  
    // Print the answer
    cout << ans;
}
  
// Driver Code
int main()
{
  
    // Given array
    int arr[] = { 1, 2, 3 };
  
    // Stores the size of array
    int n = sizeof(arr) / sizeof(arr[0]);
  
    getFloorSum(arr, n);
  
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG{
  
// Stores the maximum value of
// an array element
static int N = (int) 3e5;
  
// Function to find the sum of
// Math.floor(a[i]/a[j]) of all pairs (i, j)
static void getFloorSum(int arr[], int n)
{
    
    // Stores frequency of
    // array element
    int freq[] = new int[N];
  
    // Stores prefix sum
    // array of frequency[]
    int preFreq[] = new int[N];
  
    // Traverse the array
    for (int i = 0; i < n; i++)
    {
  
        // Update frequency
        // of arr[i]
        freq[arr[i]]++;
    }
  
    // Compute the prefix sum
    // of frequency[]
    for (int i = 1; i < N; i++) 
    {
        preFreq[i]
            = preFreq[i - 1] + freq[i];
    }
  
    // Stores the sum of Math.floor(a[i]/a[j])
    // of all pairs (i, j)
    int ans = 0;
  
    // Iterate over the range [1, Max]
    for (int i = 1; i < N; i++)
    {
  
        // Find the count of numbers in
        // the range [i * K, i * (K + 1))
        // and update the result
        for (int j = i; j < N; j += i)
        {
  
            // Stores count of numbers
            // in range[j - i - 1, j - 1]
            int X = (preFreq[j - 1]
                     - preFreq[(Math.abs(j - i - 1))]);
  
            // Update ans
            ans += X * (j / i - 1) * freq[i];
        }
    }
  
    // Print the answer
    System.out.print(ans);
}
  
// Driver Code
public static void main(String[] args)
{
  
    // Given array
    int arr[] = { 1, 2, 3 };
  
    // Stores the size of array
    int n = arr.length;
    getFloorSum(arr, n);
}
}
  
// This code is contributed by shikhasingrajput


Python3




# Python3 program to implement
# the above approach
  
# Stores the maximum value of
# an array element
N = 10**5
  
# Function to find the sum of
# floor(a[i]/a[j]) of all pairs (i, j)
def getFloorSum(arr, n):
    
    # Stores frequency of
    # array element
    freq = [ 0  for i in range(N + 1)]
  
    # Stores prefix sum
    # array of frequency[]
    preFreq = [ 0  for i in range(N + 1)]
  
    # Traverse the array
    for i in range(n):
  
        # Update frequency
        # of arr[i]
        freq[arr[i]] += 1
  
    # Compute the prefix sum
    # of frequency[]
    for i in range(1, N):
        preFreq[i] = preFreq[i - 1] + freq[i]
  
    # Stores the sum of floor(a[i]/a[j])
    # of all pairs (i, j)
    ans = 0
  
    # Iterate over the range [1, Max]
    for i in range(1, N + 1):
  
        # Find the count of numbers in
        # the range [i * K, i * (K + 1))
        # and update the result
        for j in range(i, N + 1, i):
  
            # Stores count of numbers
            # in range[j - i - 1, j - 1]
            X = (preFreq[j - 1] - preFreq[j - i - 1])
  
            # Update ans
            ans += X * (j // i - 1) * freq[i]
  
    # Prthe answer
    print(ans)
  
# Driver Code
if __name__ == '__main__':
  
    # Given array
    arr = [1, 2, 3]
  
    # Stores the size of array
    n = len(arr)
  
    getFloorSum(arr, n)
  
# This code is contributed by mohit kumar 29


C#




// C# program to implement
// the above approach
using System;
  
class GFG{
  
// Stores the maximum value of
// an array element
static int N = (int)3e5;
  
// Function to find the sum of
// Math.Floor(a[i]/a[j]) of all
// pairs (i, j)
static void getFloorSum(int []arr, int n)
{
      
    // Stores frequency of
    // array element
    int []freq = new int[N];
  
    // Stores prefix sum
    // array of frequency[]
    int []preFreq = new int[N];
  
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
          
        // Update frequency
        // of arr[i]
        freq[arr[i]]++;
    }
  
    // Compute the prefix sum
    // of frequency[]
    for(int i = 1; i < N; i++) 
    {
        preFreq[i] = preFreq[i - 1] + freq[i];
    }
  
    // Stores the sum of Math.Floor(a[i]/a[j])
    // of all pairs (i, j)
    int ans = 0;
  
    // Iterate over the range [1, Max]
    for(int i = 1; i < N; i++)
    {
          
        // Find the count of numbers in
        // the range [i * K, i * (K + 1))
        // and update the result
        for(int j = i; j < N; j += i)
        {
              
            // Stores count of numbers
            // in range[j - i - 1, j - 1]
            int X = (preFreq[j - 1] - 
                     preFreq[(Math.Abs(j - i - 1))]);
  
            // Update ans
            ans += X * (j / i - 1) * freq[i];
        }
    }
      
    // Print the answer
    Console.Write(ans);
}
  
// Driver Code
public static void Main(String[] args)
{
      
    // Given array
    int []arr = { 1, 2, 3 };
      
    // Stores the size of array
    int n = arr.Length;
      
    getFloorSum(arr, n);
}
}
  
// This code is contributed by shikhasingrajput


Javascript




<script>
  
// Javascript program to implement
// the above approach
  
// Stores the maximum value of
// an array element
var N = 1000;
  
// Function to find the sum of
// floor(a[i]/a[j]) of all pairs (i, j)
function getFloorSum(arr, n)
{
    // Stores frequency of
    // array element
    var freq = Array(N).fill(0);
  
    // Stores prefix sum
    // array of frequency[]
    var preFreq = Array(N).fill(0);
  
    // Traverse the array
    for (var i = 0; i < n; i++) {
  
        // Update frequency
        // of arr[i]
        freq[arr[i]]++;
    }
  
    // Compute the prefix sum
    // of frequency[]
    for (var i = 1; i < N; i++) {
        preFreq[i]
            = preFreq[i - 1] + freq[i];
    }
  
    // Stores the sum of floor(a[i]/a[j])
    // of all pairs (i, j)
    var ans = 0;
  
    // Iterate over the range [1, Max]
    for (var i = 1; i <N; i++) {
  
        // Find the count of numbers in
        // the range [i * K, i * (K + 1))
        // and update the result
        for (var j = i; j <N; j += i) {
  
            // Stores count of numbers
            // in range[j - i - 1, j - 1]
            var X = (preFreq[j - 1]
                     - preFreq[(Math.abs(j - i - 1))]);
              
            // Update ans
            ans += X * (parseInt(j / i) - 1) * freq[i];
        }
    }
  
    // Print the answer
    document.write( ans);
}
  
// Driver Code
// Given array
var arr = [1, 2, 3 ];
// Stores the size of array
var n = arr.length;
getFloorSum(arr, n);
  
  
</script>


Output: 

9

 

Time Complexity: O(N + M * log(log(M)), where M is the largest array element
Auxiliary Space: O(M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments