Friday, January 10, 2025
Google search engine
HomeData Modelling & AISum of first N natural numbers which are divisible by 2 and...

Sum of first N natural numbers which are divisible by 2 and 7

Given a number N. The task is to find the sum of all those numbers from 1 to N that are divisible by 2 or by 7.
Examples
 

Input : N = 7
Output : 19
sum = 2 + 4 + 6 + 7
Input : N = 14
Output : 63
sum = 2 + 4 + 6 + 7 + 8 + 10 + 12 + 14

 

Brute Force Approach:

A brute force approach to solve this problem would be to loop through all the numbers from 1 to N, and for each number, check if it is divisible by 2 or 7. If it is, then add it to the result. At the end of the loop, return the result.

Below is the implementation of the above approach: 

C++




// C++ program to find sum of numbers from 1 to N
// which are divisible by 2 or 7
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
// of numbers divisible by 2 or 7
int sum(int N)
{
    int ans = 0;
    for(int i = 1; i <= N; i++){
        if(i % 2 == 0 || i % 7 == 0){
            ans += i;
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int N = 20;
 
    cout << sum(N);
 
    return 0;
}


Java




public class Main {
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 20;
        int result = sum(N);
        System.out.println(result);
    }
 
    public static int sum(int N)
    {
        int ans = 0;
        for (int i = 1; i <= N; i++) {
            if (i % 2 == 0 || i % 7 == 0) {
                ans += i;
            }
        }
        return ans;
    }
}


Python3




# Python program to find sum of numbers from 1 to N
# which are divisible by 2 or 7
 
# Function to calculate the sum
# of numbers divisible by 2 or 7
def sum(N):
    ans = 0
    for i in range(1, N+1):
        if i % 2 == 0 or i % 7 == 0:
            ans += i
    return ans
 
# Driver code
if __name__ == "__main__":
    N = 20
    print(sum(N))
 
# The code is contributed by Nidhi goel.


C#




using System;
 
class Program
{
    // Function to calculate the sum
    // of numbers divisible by 2 or 7
    static int Sum(int N)
    {
        int ans = 0;
        for (int i = 1; i <= N; i++)
        {
            if (i % 2 == 0 || i % 7 == 0)
            {
                ans += i;
            }
        }
        return ans;
    }
 
    // Driver code
    static void Main()
    {
        int N = 20;
 
        Console.WriteLine(Sum(N));
    }
}


Javascript




// Function to calculate the sum of numbers divisible by 2 or 7
function sum(N) {
    let ans = 0;
    for (let i = 1; i <= N; i++) {
        if (i % 2 == 0 || i % 7 == 0) {
            ans += i;
        }
    }
    return ans;
}
 
let N = 20;
console.log(sum(N));


Output

117

Time Complexity: O(N)

Space Complexity: O(1)

Approach: To solve the problem, follow the below steps:
->Find the sum of numbers that are divisible by 2 upto N. Denote it by S1. 
->Find the sum of numbers that are divisible by 7 upto N. Denote it by S2. 
->Find the sum of numbers that are divisible by 14(2*7) upto N. Denote it by S3. 
->The final answer will be S1 + S2 – S3.
In order to find the sum, we can use the general formula of A.P. which is: 
 

Sn = (n/2) * {2*a + (n-1)*d}

For S1: The total numbers that will be divisible by 2 upto N will be N/2 and the series will be 2, 4, 6, 8, …. 
 

Hence, 
S1 = ((N/2)/2) * (2 * 2 + (N/2 - 1) * 2)

For S2: The total numbers that will be divisible by 7 up to N will be N/7 and the series will be 7, 14, 21, 28, …… 
 

Hence, 
S2 = ((N/7)/2) * (2 * 7 + (N/7 - 1) * 7)

For S3: The total numbers that will be divisible by 14 upto N will be N/14. 
 

Hence, 
S3 = ((N/14)/2) * (2 * 14 + (N/14 - 1) * 14)

Therefore, the result will be: 
 

S = S1 + S2 - S3

Below is the implementation of the above approach: 
 

C++




// C++ program to find sum of numbers from 1 to N
// which are divisible by 2 or 7
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
// of numbers divisible by 2 or 7
int sum(int N)
{
    int S1, S2, S3;
 
    S1 = ((N / 2)) * (2 * 2 + (N / 2 - 1) * 2) / 2;
    S2 = ((N / 7)) * (2 * 7 + (N / 7 - 1) * 7) / 2;
    S3 = ((N / 14)) * (2 * 14 + (N / 14 - 1) * 14) / 2;
 
    return S1 + S2 - S3;
}
 
// Driver code
int main()
{
    int N = 20;
 
    cout << sum(N);
 
    return 0;
}


Java




// Java  program to find sum of
// numbers from 1 to N which
// are divisible by 2 or 7
 
import java.io.*;
 
class GFG {
// Function to calculate the sum
// of numbers divisible by 2 or 7
public static int sum(int N)
{
    int S1, S2, S3;
 
    S1 = ((N / 2)) * (2 * 2 +
        (N / 2 - 1) * 2) / 2;
    S2 = ((N / 7)) * (2 * 7 +
        (N / 7 - 1) * 7) / 2;
    S3 = ((N / 14)) * (2 * 14 +
        (N / 14 - 1) * 14) / 2;
 
    return S1 + S2 - S3;
}
 
// Driver code
    public static void main (String[] args) {
 
    int N = 20;
    System.out.println( sum(N));
    }
}
 
// This code is contributed by ajit


Python3




# Python3 implementation of
# above approach
 
# Function to calculate the sum
# of numbers divisible by 2 or 7
def sum(N):
     
    S1 = ((N // 2)) * (2 * 2 + (N // 2 - 1) * 2) // 2
    S2 = ((N // 7)) * (2 * 7 + (N // 7 - 1) * 7) // 2
    S3 = ((N // 14)) * (2 * 14 + (N // 14 - 1) * 14) // 2
 
    return S1 + S2 - S3
 
 
# Driver code
if __name__=='__main__':
    N = 20
 
    print(sum(N))
 
# This code is written by
# Sanjit_Prasad


C#




// C# program to find sum of
// numbers from 1 to N which
// are divisible by 2 or 7
using System;
 
class GFG
{
// Function to calculate the sum
// of numbers divisible by 2 or 7
public static int sum(int N)
{
    int S1, S2, S3;
 
    S1 = ((N / 2)) * (2 * 2 +
          (N / 2 - 1) * 2) / 2;
    S2 = ((N / 7)) * (2 * 7 +
          (N / 7 - 1) * 7) / 2;
    S3 = ((N / 14)) * (2 * 14 +
          (N / 14 - 1) * 14) / 2;
 
    return S1 + S2 - S3;
}
 
// Driver code
public static int Main()
{
    int N = 20;
    Console.WriteLine( sum(N));
    return 0;
}
}
 
// This code is contributed
// by SoumikMondal


Javascript




<script>
// javascript  program to find sum of
// numbers from 1 to N which
// are divisible by 2 or 7
 
// Function to calculate the sum
// of numbers divisible by 2 or 7
function sum(N)
{
    var S1, S2, S3;
 
    S1 = (((N / 2)) * parseInt(2 * 2 +
        parseInt(N / 2 - 1) * 2) / 2);
    S2 = (parseInt(parseInt(N / 7)) * (2 * 7 +
        parseInt(N / 7 - 1) * 7) / 2);
    S3 = (parseInt(parseInt(N / 14)) * (2 * 14 +
        parseInt(N / 14 - 1) * 14) / 2);
 
    return S1 + S2 - S3;
}
 
// Driver code
var N = 20;
document.write( sum(N));
 
// This code is contributed by shikhasingrajput
</script>


PHP




<?php
// PHP program to find sum of numbers
// from 1 to N which are divisible by 2 or 7
 
// Function to calculate the sum
// of numbers divisible by 2 or 7
function sum($N)
{
    $S1 = (int)(($N / 2)) * (int)(2 * 2 +
           (int)($N / 2 - 1) * 2) / 2;
    $S2 = (int)(($N / 7)) * (int)(2 * 7 +
           (int)($N / 7 - 1) * 7) / 2;
    $S3 = (int)(($N / 14)) * (int)(2 * 14 +
           (int)($N / 14 - 1) * 14) / 2;
 
    return ($S1 + $S2) - $S3;
}
 
// Driver code
$N = 20;
 
echo sum($N);
 
// This Code is Contributed by akt_mit
?>


Output

117

Time Complexity: O(1), since there is no loop or recursion.

Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments