Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AISum of elements of a Geometric Progression (GP) in a given range

Sum of elements of a Geometric Progression (GP) in a given range

Given a Geometric Progression series in arr[] and Q queries in the form of [L, R], where L is the left boundary of the range and R is the right boundary. The task is to find the sum of the Geometric Progression elements in the given range.

Note: The range is 1-indexed and1 ? L, R ? N, where N is the size of arr.
Examples: 

Input: arr[] = {2, 4, 8, 16, 32, 64, 128, 256}, Q = [[2, 4], [2, 6], [5, 8]] 
Output: 
28 
124 
480
Explanation: 
Range 1: arr = {4, 8, 16}. Therefore sum = 28 
Range 2: arr = {4, 8, 16, 32, 64}. Therefore sum = 124 
Range 3: arr = {32, 64, 128, 256}. Therefore sum = 480

Input: arr[] = {7, 7, 7, 7, 7, 7}, Q = [[1, 6], [2, 4], [3, 3]] 
Output: 
42
21 

Explanation: 
Range 1: arr = {7, 7, 7, 7, 7, 7}. Therefore sum = 42
Range 2: arr = {7, 7, 7}. Therefore sum = 21 
Range 3: arr = {7}. Therefore sum = 7

Approach: Since the given sequence is an Geometric progression, the sum can be easily found out in two steps efficiently:

  1. Get the first element of the range.
  2. If d = 1, then multiply d*k to it, else multiply the (dk – 1)/(d – 1) to it, where d is the common ratio of the GP and k is number of elements in the range.

For example: 
Suppose a[i] be the first element of the range, d be the common ratio of GP and k be the number of elements in the given range. 
Then the sum of the range would be 

= a[i] + a[i+1] + a[i+2] + ….. + a[i+k-1] 
= a[i] + (a[i] * d) + (a[i] * d * d) + …. + (a[i] *  dk) 
= a[i] *  (1 + d + … + dk
= a[i] * (dk – 1)/(d – 1)

Below is the implementation of the above approach: 

C++




// C++ program to find the sum
// of elements of an GP in the
// given range
#include <bits/stdc++.h>
using namespace std;
 
// Function to find sum in the given range
int findSum(int arr[], int n,
            int left, int right)
{
     
    // Find the value of k
    int k = right - left + 1;
 
    // Find the common difference
    int d = arr[1] / arr[0];
 
    // Find the sum
    int ans = arr[left - 1];
     
    if (d == 1)
        ans = ans * d * k;
    else
        ans = ans * ((int)pow(d, k) - 1 /
                                 (d - 1));
         
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 4, 8, 16, 32,
                  64, 128, 256 };
    int queries = 3;
    int q[][2] = { { 2, 4 }, { 2, 6 },
                   { 5, 8 } };
     
    int n = sizeof(arr) / sizeof(arr[0]);
     
    for(int i = 0; i < queries; i++)
        cout << (findSum(arr, n, q[i][0], q[i][1]))
             << endl;
 
    return 0;
}
 
// This code is contributed by divyeshrabadiya07


Java




// Java program to find the sum
// of elements of an GP in the
// given range
import java.io.*;
import java.util.*;
 
class GFG{
     
// Function to find sum in the given range
static int findSum(int[] arr, int n,
                int left, int right)
{
     
    // Find the value of k
    int k = right - left + 1;
 
    // Find the common difference
    int d = arr[1] / arr[0];
 
    // Find the sum
    int ans = arr[left - 1];
     
    if (d == 1)
        ans = ans * d * k;
    else
        ans = ans * ((int)Math.pow(d, k) - 1 /
                                (d - 1));
         
    return ans;
}
 
// Driver Code
public static void main(String args[])
{
    int[] arr = { 2, 4, 8, 16, 32,
                64, 128, 256 };
    int queries = 3;
    int[][] q = { { 2, 4 }, { 2, 6 }, { 5, 8 } };
     
    int n = arr.length;
     
    for(int i = 0; i < queries; i++)
        System.out.println(findSum(arr, n, q[i][0],
                                        q[i][1]));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program to
# find the sum of elements
# of an GP in the given range
 
# Function to find sum in the given range
def findSum(arr, n, left, right):
 
    # Find the value of k
    k = right - left + 1
 
    # Find the common difference
    d = arr[1] // arr[0]
 
    # Find the sum
    ans = arr[left - 1]
    if d == 1:
        ans = ans * d * k
    else:
        ans = ans * (d ** k - 1) // (d -1)
    return ans
 
# Driver code
if __name__ == '__main__':
    arr = [ 2, 4, 8, 16, 32, 64, 128, 256 ]
    queries = 3
    q = [[ 2, 4 ], [ 2, 6 ], [ 5, 8 ]]
    n = len(arr)
 
    for i in range(queries):
        print(findSum(arr, n, q[i][0], q[i][1]))


C#




// C# program to find the sum
// of elements of an GP in the
// given range
using System;
 
class GFG{
     
// Function to find sum in the given range
static int findSum(int[] arr, int n,
                   int left, int right)
{
     
    // Find the value of k
    int k = right - left + 1;
 
    // Find the common difference
    int d = arr[1] / arr[0];
 
    // Find the sum
    int ans = arr[left - 1];
     
    if (d == 1)
        ans = ans * d * k;
    else
        ans = ans * ((int)Math.Pow(d, k) - 1 /
                                      (d - 1));
         
    return ans;
}
 
// Driver Code
public static void Main(string []args)
{
    int[] arr = { 2, 4, 8, 16, 32,
                  64, 128, 256 };
                   
    int queries = 3;
    int[,] q = { { 2, 4 }, { 2, 6 }, { 5, 8 } };
     
    int n = arr.Length;
     
    for(int i = 0; i < queries; i++)
        Console.Write(findSum(arr, n, q[i, 0],
                                      q[i, 1]) + "\n");
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
// JavaScript program to find the sum
// of elements of an GP in the
// given range
 
// Function to find sum in the given range
function findSum(arr, n, left, right) {
 
    // Find the value of k
    let k = right - left + 1;
 
    // Find the common difference
    let d = arr[1] / arr[0];
 
    // Find the sum
    let ans = arr[left - 1];
 
    if (d == 1)
        ans = ans * d * k;
    else
        ans = ans * (Math.pow(d, k) - 1 / (d - 1));
 
    return ans;
}
 
// Driver Code
let arr = [2, 4, 8, 16, 32,
    64, 128, 256];
 
let queries = 3;
 
let q = [[2, 4], [2, 6],
[5, 8]];
 
let n = arr.length;
 
for (let i = 0; i < queries; i++)
    document.write(findSum(arr, n, q[i][0], q[i][1]));
 
// This code is contributed by blalverma92
 
</script>


Output: 

28
124
480

 

  • Time complexity: O(Q) 
  • Space complexity: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments