Saturday, October 11, 2025
HomeData Modelling & AISum of array elements that is first continuously increasing then decreasing

Sum of array elements that is first continuously increasing then decreasing

Given an array where elements are first continuously increasing and after that its continuously decreasing unit first number is reached again. We want to add the elements of array. We may assume that there is no overflow in sum.

Examples: 

Input  : arr[] = {5, 6, 7, 6, 5}.
Output : 29 

Input  : arr[] = {10, 11, 12, 13, 12, 11, 10}
Output : 79

A simple solution is to traverse through n and add the elements of array. 

Implementation:

C++




// Simple C++ method to find sum of the
// elements of array.
#include <iostream>
using namespace std;
int arraySum(int arr[], int n)
{
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum = sum + arr[i];
    return sum;
}
 
// Driver code
int main()
{
    int arr[] = {10, 11, 12, 13, 12, 11, 10};
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << arraySum(arr, n);
    return 0;
}


Java




// JAVA Code for Sum of array elements
// that is first continuously increasing
// then decreasing
class GFG {
     
    public static int arraySum(int arr[], int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum = sum + arr[i];
        return sum;
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int arr[] = {10, 11, 12, 13, 12, 11, 10};
        int n = arr.length;
        System.out.print(arraySum(arr, n));
             
    }
}
// This code is contributed by Arnav Kr. Mandal.


Python3




# Simple python method to find sum of the
# elements of array.
def arraySum( arr, n):
    _sum = 0
    for i in range(n):
        _sum = _sum + arr[i]
    return _sum
 
# Driver code
arr = [10, 11, 12, 13, 12, 11, 10]
n = len(arr)
print(arraySum(arr, n))
 
# This code is contributed by "Abhishek Sharma 44"


C#




// C# Code for Sum of array elements
// that is first continuously increasing
// then decreasing
using System;
 
class GFG {
     
    public static int arraySum(int []arr, int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum = sum + arr[i];
        return sum;
    }
     
    // Driver program
    public static void Main()
    {
        int []arr = {10, 11, 12, 13, 12, 11, 10};
        int n = arr.Length;
        Console.WriteLine(arraySum(arr, n));
             
    }
}
// This code is contributed by vt_m.


PHP




<?php
// Simple PHP method
// to find sum of the
// elements of array.
function arraySum($arr, $n)
{
    $sum = 0;
    for ($i = 0; $i < $n; $i++)
        $sum = $sum + $arr[$i];
    return $sum;
}
 
// Driver code
$arr = array(10, 11, 12, 13,
             12, 11, 10);
$n = sizeof($arr);
echo(arraySum($arr, $n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
    // Simple Javascript method
// to find sum of the
// elements of array.
function arraySum(arr, n)
{
    let sum = 0;
    for (let i = 0; i < n; i++)
        sum = sum + arr[i];
    return sum;
}
   
// Driver code
let arr = [10, 11, 12, 13,
             12, 11, 10];
let n = arr.length;
document.write(arraySum(arr, n));
   
// This code is contributed by _saurabh_jaiswal.
</script>


Output

79

Time Complexity : O(n)

Space Complexity : O(1)

An efficient solution is to apply below formula. 

sum = (arr[0] - 1)*n + ?n/2?2

How does it work? 
If we take a closer look, we can notice that the
sum can be written as.

(arr[0] - 1)*n + (1 + 2 + .. x + (x -1) + (x-2) + ..1)
Let us understand above result with example {10, 11,
12, 13, 12, 11, 10}.  If we subtract 9 (arr[0]-1) from
this array, we get {1, 2, 3, 2, 1}.

Where x = ceil(n/2)  [Half of array size]

As we know that 1 + 2 + 3 + . . . + x = x * (x + 1)/2.
And we have given
    = 1 + 2 + 3 + . . . + x + (x - 1) + . . . + 3 + 2 + 1
    = (1 + 2 + 3 + . . . + x) + ((x - 1) + . . . + 3 + 2 + 1)
    = (x * (x + 1))/2 + ((x - 1) * x)/2
    = (x2 + x)/2 + (n2 - x)/2
    = (2 * x2)/2
    = x2

Implementation:

C++




// Efficient C++ method to find sum of the
// elements of array that is halfway increasing
// and then halfway decreasing
#include <iostream>
using namespace std;
 
int arraySum(int arr[], int n)
{
    int x = (n+1)/2;
    return (arr[0] - 1)*n + x*x;
}
 
// Driver code
int main()
{
    int arr[] = {10, 11, 12, 13, 12, 11, 10};
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << arraySum(arr, n);
    return 0;
}


Java




// JAVA Code for Sum of array elements
// that is first continuously increasing
// then decreasing
class GFG {
     
    public static int arraySum(int arr[], int n)
    {
        int x = (n + 1) / 2;
        return (arr[0] - 1) * n + x * x;
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int arr[] = {10, 11, 12, 13, 12, 11, 10};
        int n = arr.length;
        System.out.print(arraySum(arr, n));  
    }
}
// This code is contributed by Arnav Kr. Mandal.


Python3




# Efficient python method to find sum of the
# elements of array that is halfway increasing
# and then halfway decreasing
def arraySum( arr, n):
    x = (n + 1)/2
    return (arr[0] - 1)*n + x * x
     
# Driver code
arr = [10, 11, 12, 13, 12, 11, 10]
n = len(arr)
print(arraySum(arr, n))
 
# This code is contributed by "Abhishek Sharma 44"


C#




// C# Code for Sum of array elements
// that is first continuously increasing
// then decreasing
using System;
 
class GFG {
     
    public static int arraySum(int []arr, int n)
    {
        int x = (n + 1) / 2;
        return (arr[0] - 1) * n + x * x;
    }
     
    /* Driver program to test above function */
    public static void Main()
    {
        int []arr = {10, 11, 12, 13, 12, 11, 10};
        int n = arr.Length;
        Console.WriteLine(arraySum(arr, n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// Efficient PHP method to
// find sum of the elements
// of array that is halfway
// increasing and then halfway
// decreasing
 
function arraySum($arr, $n)
{
    $x = ($n + 1) / 2;
    return ($arr[0] - 1) *
            $n + $x * $x;
}
 
// Driver code
$arr = array(10, 11, 12, 13,
                12, 11, 10);
$n = sizeof($arr);
echo(arraySum($arr, $n));
 
// This code is contributed by Ajit.
?>


Javascript




// Efficient Javascript method to
// find sum of the elements
// of array that is halfway
// increasing and then halfway
// decreasing
   
function arraySum(arr, n)
{
    let x = (n + 1) / 2;
    return (arr[0] - 1) *
            n + x * x;
}
   
// Driver code
let arr = [10, 11, 12, 13,
                12, 11, 10];
let n = arr.length;
document.write(arraySum(arr, n));
   
// This code is contributed by _saurabh_jaiswal.


Output

79

Time Complexity: O(1)
Auxiliary Space: O(1)

If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32352 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6720 POSTS0 COMMENTS
Nicole Veronica
11884 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6839 POSTS0 COMMENTS
Ted Musemwa
7103 POSTS0 COMMENTS
Thapelo Manthata
6794 POSTS0 COMMENTS
Umr Jansen
6794 POSTS0 COMMENTS