Saturday, January 11, 2025
Google search engine
HomeData Modelling & AISum of all possible expressions of a numeric string possible by inserting...

Sum of all possible expressions of a numeric string possible by inserting addition operators

Given a numeric string str of length N, the task is to find the sum of all possible expressions by inserting the ‘+’ operator between the characters of the string any number of times.

Examples:

Input: str = “125” Output: 176 Explanation: Inserting “+” after 1st index modifies str to “1+25” and value = 26 Inserting “+” after 2nd index modifies str to “12+5” and value = 17 Inserting “+” after both 1st and 2nd index modifies str to “1+2+5” and value = 8 Therefore, the total sum of all possible expression is 125 + 26 + 17 + 8 = 176

Input: str = “9999999999”
Output: 12656242944

Approach: The idea is to insert the ‘+’ operator at all possible index of the string in all possible ways and calculate the sum. Finally, print the total sum obtained. Follow the steps below to solve the problem:

  • Initialize a variable say, sumOfExp to store the sum of all possible expression by inserting the ‘+’ operator at all possible indices of the string.
  • Generate all possible subset of indices of the string iteratively. For every subset of indices inserts the ‘+’ operator at elements of the subset and increment sumOfExp by the sum of the current expression.
  • Finally, print the value of sumOfExp.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find sum of all expressions by
// inserting '+' operator at all possible indices
void findSumOfExpressions(string S, int N)
{
  // Stores sum of all expressions by inserting
  // '+' operator at all possible indices
  unsigned long long sumOfExp = 0;
 
  // Generate all possible subset
  // of indices iteratively
  for (int i = 0; i < pow(2, N - 1); i++) {
    // Stores sum of
    // current expressions
    unsigned long long ans_sub = 0;
 
    // Stores numbers of
    // current expressions
    string subst = string(1, S.at(0));
 
    // Traverse the string at insert + at
    // current subset of indices
    for (int j = 0; j < N - 1; j++) {
      // If current index exists
      // in the current subset
      if (((i >> j) & 1) == 1) {
        // Update ans_sub
        ans_sub += stoull(subst);
 
        // Update subset
        subst = string(1, S.at(j + 1));
      }
      else
        // Update subset
        subst += S.at(j + 1);
 
      // + can't be inserted after
      // the last index
      if (j == N - 2)
        ans_sub += stoull(subst);
    }
 
    // Update ans
    sumOfExp += ans_sub;
  }
  // Base case
  if (N == 1)
    cout << S;
  else
 
    // Print answer
    cout << sumOfExp;
}
// Driver Code
 
int main()
{
  // Given string
  string S = "9999999999";
 
  // Length of the string
  int N = S.length();
 
  // Function call
  findSumOfExpressions(S, N);
}
 
// This code is contributed by phasing17.


Java




import java.util.List;
import java.util.ArrayList;
 
class Main
{
   
  // Function to find sum of all expressions by
  // inserting '+' operator at all possible indices
  static void findSumOfExpressions(String S, int N)
  {
     
    // Stores sum of all expressions by inserting
    // '+' operator at all possible indices
    long sumOfExp = 0;
 
    // Generate all possible subset
    // of indices iteratively
    for (int i = 0; i < Math.pow(2, N - 1); i++) {
      // Stores sum of
      // current expressions
      long ans_sub = 0;
 
      // Stores numbers of
      // current expressions
      String subst = "" + S.charAt(0);
 
      // Traverse the string at insert + at
      // current subset of indices
      for (int j = 0; j < N - 1; j++) {
        // If current index exists
        // in the current subset
        if (((i >> j) & 1) == 1) {
          // Update ans_sub
          ans_sub += Long.parseLong(subst);
 
          // Update subset
          subst = "" + S.charAt(j + 1);
        }
        else
          // Update subset
          subst += S.charAt(j + 1);
 
        // + can't be inserted after
        // the last index
        if (j == N - 2)
          ans_sub += Long.parseLong(subst);
      }
 
      // Update ans
      sumOfExp += ans_sub;
    }
    // Base case
    if (N == 1)
      System.out.println(S);
    else
 
      // Print answer
      System.out.println(sumOfExp);
  }
  // Driver Code
 
  public static void main(String[] args)
  {
     
    // Given string
    String S = "9999999999";
 
    // Length of the string
    int N = S.length();
 
    // Function call
    findSumOfExpressions(S, N);
  }
}
 
// This code is contributed by phasing17.


Python3




# Python program to implement
# the above approach
 
# Function to find sum of all expressions by
# inserting '+' operator at all possible indices
def findSumOfExpressions(S, N):
 
    # Stores sum of all expressions by inserting
    # '+' operator at all possible indices
    sumOfExp = 0
 
    # Generate all possible subset
    # of indices iteratively
    for i in range(2 ** (N - 1)):
 
        # Stores sum of
        # current expressions
        ans_sub = 0
 
        # Stores numbers of
        # current expressions
        subst = S[0]
 
        # Traverse the string at insert + at
        # current subset of indices
        for j in range(N - 1):
 
            # If current index exists
            # in the current subset
            if (i >> j) & 1:
 
                # Update ans_sub
                ans_sub += int(subst)
 
                # Update subset
                subst = S[j + 1]
            else:
 
                # Update subset
                subst += S[j + 1]
 
            # + can't be inserted after
            # the last index   
            if j == N - 2:
                ans_sub += int(subst)
 
        # Update ans
        sumOfExp += ans_sub
 
    # Base case    
    if N == 1:
        print(int(S))
    else:
 
        # Print answer
        print(sumOfExp)
 
# Driver Code
if __name__ == '__main__':
     
    # Given string
    S = "9999999999"
     
    # Length of the string
    N = len(S)
 
    # Function call
    findSumOfExpressions(S, N)


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
    // Function to find sum of all expressions by
    // inserting '+' operator at all possible indices
    static void findSumOfExpressions(string S, int N)
    {
       
      // Stores sum of all expressions by inserting
      // '+' operator at all possible indices
      ulong sumOfExp = 0;
     
      // Generate all possible subset
      // of indices iteratively
      for (int i = 0; i < Math.Pow(2, N - 1); i++) {
        // Stores sum of
        // current expressions
        ulong ans_sub = 0;
     
        // Stores numbers of
        // current expressions
        string subst = "" + S[0];
     
        // Traverse the string at insert + at
        // current subset of indices
        for (int j = 0; j < N - 1; j++) {
          // If current index exists
          // in the current subset
          if (((i >> j) & 1) == 1) {
            // Update ans_sub
            ans_sub += Convert.ToUInt64(subst);
     
            // Update subset
            subst = "" + S[j + 1];
          }
          else
            // Update subset
            subst += S[j + 1];
     
          // + can't be inserted after
          // the last index
          if (j == N - 2)
            ans_sub += Convert.ToUInt64(subst);
        }
     
        // Update ans
        sumOfExp += ans_sub;
      }
      // Base case
      if (N == 1)
        Console.WriteLine(S);
      else
     
        // Print answer
        Console.WriteLine(sumOfExp);
    }
    // Driver Code
     
    public static void Main(string[] args)
    {
      // Given string
      string S = "9999999999";
     
      // Length of the string
      int N = S.Length;
     
      // Function call
      findSumOfExpressions(S, N);
    }
}
 
// This code is contributed by phasing17.


Javascript




// JavaScript program to implement
// the above approach
 
// Function to find sum of all expressions by
// inserting '+' operator at all possible indices
function findSumOfExpressions(S, N)
{
    // Stores sum of all expressions by inserting
    // '+' operator at all possible indices
    let sumOfExp = 0
 
    // Generate all possible subset
    // of indices iteratively
    for (var i = 0; i < 2 ** (N - 1); i++)
    {
        // Stores sum of
        // current expressions
        let ans_sub = 0
 
        // Stores numbers of
        // current expressions
        let subst = S[0]
 
        // Traverse the string at insert + at
        // current subset of indices
        for (var j = 0; j < N - 1; j++)
        {
            // If current index exists
            // in the current subset
            if (((i >> j) & 1) == 1)
            {
                // Update ans_sub
                ans_sub += parseInt(subst)
 
                // Update subset
                subst = S[j + 1]
            }
            else
 
                // Update subset
                subst += S[j + 1]
 
            // + can't be inserted after
            // the last index   
            if (j == N - 2)
                ans_sub += parseInt(subst)
        }
        // Update ans
        sumOfExp += ans_sub
    }
    // Base case    
    if (N == 1)
        console.log(parseInt(S))
    else
 
        // Print answer
        console.log(sumOfExp)
}
// Driver Code
 
// Given string
let S = "9999999999"
     
// Length of the string
let N = S.length
 
// Function call
findSumOfExpressions(S, N)
 
// This code is contributed by phasing17.


Output:

12656242944

Time Complexity: O(2N * N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments