Given an array arr[] containing N positive integer. The task is to find the sum of all the perfect numbers from the array.
A number is perfect if it is equal to the sum of its proper divisors i.e. the sum of its positive divisors excluding the number itself.
Examples:
Input: arr[] = {3, 6, 9}
Output: 6
Proper divisor sum of 3 = 1
Proper divisor sum of 6 = 1 + 2 + 3 = 6
Proper divisor sum of 9 = 1 + 3 = 4
Input: arr[] = {17, 6, 10, 6, 4}
Output: 12
Approach: Initialize sum = 0 and for every element of the array, find the sum of its proper divisors say sumFactors. If arr[i] = sumFactors then update the resultant sum as sum = sum + arr[i]. Print the sum in the end.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach#include <iostream>using namespace std;// Function to return the sum of// all the proper factors of nint sumOfFactors(int n){ int sum = 0; for (int f = 1; f <= n / 2; f++) { // f is the factor of n if (n % f == 0) { sum += f; } } return sum;}// Function to return the required sumint getSum(int arr[], int n){ // To store the sum int sum = 0; for (int i = 0; i < n; i++) { // If current element is non-zero and equal // to the sum of proper factors of itself if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) { sum += arr[i]; } } return sum;}// Driver codeint main() { int arr[10] = { 17, 6, 10, 6, 4 }; int n = sizeof(arr) / sizeof(arr[0]); cout << (getSum(arr, n)); return 0;} |
Java
// Java implementation of the above approachclass GFG { // Function to return the sum of // all the proper factors of n static int sumOfFactors(int n) { int sum = 0; for (int f = 1; f <= n / 2; f++) { // f is the factor of n if (n % f == 0) { sum += f; } } return sum; } // Function to return the required sum static int getSum(int[] arr, int n) { // To store the sum int sum = 0; for (int i = 0; i < n; i++) { // If current element is non-zero and equal // to the sum of proper factors of itself if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) { sum += arr[i]; } } return sum; } // Driver code public static void main(String[] args) { int[] arr = { 17, 6, 10, 6, 4 }; int n = arr.length; System.out.print(getSum(arr, n)); }} |
Python3
# Python3 implementation of the above approach# Function to return the sum of# all the proper factors of ndef sumOfFactors(n): sum = 0 for f in range(1, n // 2 + 1): # f is the factor of n if (n % f == 0): sum += f return sum# Function to return the required sumdef getSum(arr, n): # To store the sum sum = 0 for i in range(n): # If current element is non-zero and equal # to the sum of proper factors of itself if (arr[i] > 0 and arr[i] == sumOfFactors(arr[i])) : sum += arr[i] return sum# Driver codearr = [17, 6, 10, 6, 4]n = len(arr)print(getSum(arr, n))# This code is contributed by Mohit Kumar |
C#
// C# implementation of the above approachusing System;class GFG{ // Function to return the sum of // all the proper factors of n static int sumOfFactors(int n) { int sum = 0; for (int f = 1; f <= n / 2; f++) { // f is the factor of n if (n % f == 0) { sum += f; } } return sum; } // Function to return the required sum static int getSum(int[] arr, int n) { // To store the sum int sum = 0; for (int i = 0; i < n; i++) { // If current element is non-zero and equal // to the sum of proper factors of itself if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) { sum += arr[i]; } } return sum; } // Driver code static public void Main () { int[] arr = { 17, 6, 10, 6, 4 }; int n = arr.Length; Console.WriteLine(getSum(arr, n)); }}// This code is contributed by @ajit_0023 |
Javascript
<script>// Java script implementation of the above approach // Function to return the sum of // all the proper factors of n function sumOfFactors( n) { let sum = 0; for (let f = 1; f <= n / 2; f++) { // f is the factor of n if (n % f == 0) { sum += f; } } return sum; } // Function to return the required sum function getSum( arr, n) { // To store the sum let sum = 0; for (let i = 0; i < n; i++) { // If current element is non-zero and equal // to the sum of proper factors of itself if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) { sum += arr[i]; } } return sum; } // Driver code let arr = [ 17, 6, 10, 6, 4 ]; let n = arr.length; document.write(getSum(arr, n)); //contributed by bobby</script> |
12
Time Complexity: O(n * max(arr)), where max(arr) is the largest element of the array arr.
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
