Saturday, January 11, 2025
Google search engine
HomeData Modelling & AISum of all Non-Fibonacci numbers in a range for Q queries

Sum of all Non-Fibonacci numbers in a range for Q queries

Given Q queries containing ranges in the form of [L, R], the task is to find the sum of all non-fibonacci numbers for each range in the given queries.
Examples: 
 

Input: arr[][] = {{1, 5}, {6, 10}} 
Output: 4 32 
Explanation: 
Query 1: In the range [1, 5], only 4 is a non-fibonacci number. 
Query 2: In the range [6, 10], 6, 7, 9 and 10 are the non-fibonacci numbers. 
Therefore, 6 + 7 + 9 + 10 = 32.
Input: arr[][] = {{10, 20}, {20, 50}} 
Output: 152 10792 
 

 

Approach: The idea is to use a prefix sum array. The sum of all non-fibonacci numbers is precomputed and stored in an array. So that every query can be answered in O(1) time. Every index of the array stores the sum of all non-fibonacci numbers from 1 to that index. So for finding the sum of all non-fibonacci numbers in a range can be computed as: 
 

Let the precomputed array is stored in pref[] array
sum = pref[R] - pref[L - 1]

Below is the implementation of the above approach:
 

C++




// C++ implementation to find the
// sum of all non-fibonacci numbers
// in a range from L to R
  
#include <bits/stdc++.h>
#define ll int
using namespace std;
  
// Array to precompute the sum of
// non-fibonacci numbers
long long pref[100010];
  
// Function to find if a number
// is a perfect square
bool isPerfectSquare(int x)
{
    int s = sqrt(x);
    return (s * s == x);
}
  
// Function that returns N
// if N is non-fibonacci number
int isNonFibonacci(int n)
{
    // N is Fibonacci if one of
    // 5*n*n + 4 or 5*n*n - 4 or both
    // are perfect square
    if (isPerfectSquare(5 * n * n + 4)
        || isPerfectSquare(5 * n * n - 4))
        return 0;
    else
        return n;
}
  
// Function to precompute sum of
// non-fibonacci Numbers
void compute()
{
    for (int i = 1; i <= 100000; ++i) {
        pref[i] = pref[i - 1]
                  + isNonFibonacci(i);
    }
}
  
// Function to find the sum of all
// non-fibonacci numbers in a range
void printSum(int L, int R)
{
    int sum = pref[R] - pref[L - 1];
    cout << sum << " ";
}
  
// Driver Code
int main()
{
    // Pre-computation
    compute();
  
    int Q = 2;
    int arr[][2] = { { 1, 5 },
                     { 6, 10 } };
    // Loop to find the sum for
    // each query
    for (int i = 0; i < Q; i++) {
        printSum(arr[i][0], arr[i][1]);
    }
    return 0;
}


Java




// Java implementation to find the
// sum of all non-fibonacci numbers
// in a range from L to R 
import java.util.*; 
   
// Array to precompute the sum of
// non-fibonacci numbers
  
class GFG
{
static long pref[] = new long[100010];
   
// Function to find if a number
// is a perfect square
static boolean isPerfectSquare(int x)
{
    int s =(int)Math.sqrt(x);
    return (s * s == x);
}
   
// Function that returns N
// if N is non-fibonacci number
static int isNonFibonacci(int n)
{
    // N is Fibonacci if one of
    // 5*n*n + 4 or 5*n*n - 4 or both
    // are perfect square
    if (isPerfectSquare(5 * n * n + 4)
        || isPerfectSquare(5 * n * n - 4))
        return 0;
    else
        return n;
}
   
// Function to precompute sum of
// non-fibonacci Numbers
static void compute()
{
    for (int i = 1; i <= 100000; ++i) {
        pref[i] = pref[i - 1]
                  + isNonFibonacci(i);
    }
}
   
// Function to find the sum of all
// non-fibonacci numbers in a range
static void printSum(int L, int R)
{
    int sum = (int)(pref[R] - pref[L - 1]);
    System.out.print(sum + " ");
}
   
// Driver Code
public static void main(String []args)
{
    // Pre-computation
    compute();
   
    int Q = 2;
    int arr[][] = { { 1, 5 },
                     { 6, 10 } };
    // Loop to find the sum for
    // each query
    for (int i = 0; i < Q; i++) {
        printSum(arr[i][0], arr[i][1]);
    }
}
}
  
// This code is contributed by chitranayal


Python3




# Python3 implementation to find the
# sum of all non-fibonacci numbers
# in a range from L to R
from math import sqrt
  
# Array to precompute the sum of
# non-fibonacci numbers
pref = [0]*100010
  
# Function to find if a number
# is a perfect square
def isPerfectSquare(x):
      
    s = int(sqrt(x))
    if (s * s == x):
        return True
    return False
  
# Function that returns N
# if N is non-fibonacci number
def isNonFibonacci(n):
      
    # N is Fibonacci if one of
    # 5*n*n + 4 or 5*n*n - 4 or both
    # are perfect square
    x = 5 * n * n
    if (isPerfectSquare(x + 4) or isPerfectSquare(x - 4)):
        return 0
    else:
        return n
  
# Function to precompute sum of
# non-fibonacci Numbers
def compute():
      
    for i in range(1,100001):
        pref[i] = pref[i - 1] + isNonFibonacci(i)
      
# Function to find the sum of all
# non-fibonacci numbers in a range
def printSum(L, R):
      
    sum = pref[R] - pref[L-1]
    print(sum, end=" ")
  
# Driver Code
# Pre-computation
compute()
  
Q = 2
arr = [[1, 5],[6, 10]]
# Loop to find the sum for
# each query
  
for i in range(Q):
    printSum(arr[i][0], arr[i][1])
  
# This code is contributed by shubhamsingh10


C#




// C# implementation to find the
// sum of all non-fibonacci numbers
// in a range from L to R 
using System;
   
// Array to precompute the sum of
// non-fibonacci numbers
class GFG
{
static long []pref = new long[100010];
    
// Function to find if a number
// is a perfect square
static bool isPerfectSquare(int x)
{
    int s =(int)Math.Sqrt(x);
    return (s * s == x);
}
    
// Function that returns N
// if N is non-fibonacci number
static int isNonFibonacci(int n)
{
    // N is Fibonacci if one of
    // 5*n*n + 4 or 5*n*n - 4 or both
    // are perfect square
    if (isPerfectSquare(5 * n * n + 4)
        || isPerfectSquare(5 * n * n - 4))
        return 0;
    else
        return n;
}
    
// Function to precompute sum of
// non-fibonacci Numbers
static void compute()
{
    for (int i = 1; i <= 100000; ++i) {
        pref[i] = pref[i - 1]
                  + isNonFibonacci(i);
    }
}
    
// Function to find the sum of all
// non-fibonacci numbers in a range
static void printSum(int L, int R)
{
    int sum = (int)(pref[R] - pref[L - 1]);
    Console.Write(sum + " ");
}
    
// Driver Code
public static void Main(String []args)
{
    // Pre-computation
    compute();
    
    int Q = 2;
    int [,]arr = { { 1, 5 },
                     { 6, 10 } };
    // Loop to find the sum for
    // each query
    for (int i = 0; i < Q; i++) {
        printSum(arr[i,0], arr[i,1]);
    }
}
}
  
// This code is contributed by Rajput-Ji


Javascript




<script>
  
// Javascript implementation to find the
// sum of all non-fibonacci numbers
// in a range from L to R
  
// Array to precompute the sum of
// non-fibonacci numbers
var pref = Array(100010).fill(0);
  
// Function to find if a number
// is a perfect square
function isPerfectSquare(x)
{
    var s = parseInt(Math.sqrt(x));
    return (s * s == x);
}
  
// Function that returns N
// if N is non-fibonacci number
function isNonFibonacci(n)
{
    // N is Fibonacci if one of
    // 5*n*n + 4 or 5*n*n - 4 or both
    // are perfect square
    if (isPerfectSquare(5 * n * n + 4)
        || isPerfectSquare(5 * n * n - 4))
        return 0;
    else
        return n;
}
  
// Function to precompute sum of
// non-fibonacci Numbers
function compute()
{
    for (var i = 1; i <= 100000; ++i) {
        pref[i] = pref[i - 1]
                  + isNonFibonacci(i);
    }
}
  
// Function to find the sum of all
// non-fibonacci numbers in a range
function printSum(L, R)
{
    var sum = pref[R] - pref[L - 1];
    document.write(sum + " ");
}
  
// Driver Code
// Pre-computation
compute();
var Q = 2;
var arr = [ [ 1, 5 ],
                 [ 6, 10 ] ];
// Loop to find the sum for
// each query
for (var i = 0; i < Q; i++) {
    printSum(arr[i][0], arr[i][1]);
}
  
// This code is contributed by rutvik_56.
</script>


Output: 

4 32

 

Performance Analysis: 
 

  • Time Complexity: As in the above approach, There is pre-computation which takes O(N) time and to answer each query it takes O(1) time.
  • Auxiliary Space Complexity: As in the above approach, There is extra space used to precompute the sum of all non-fibonacci number. Hence the auxiliary space complexity will be O(N).

 

Last Updated :
10 Jan, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments