Given two very large numbers L and R where L ? R, the task is to compute the sum of all the natural numbers from L to R. The sum could be large so print the sum % 1000000007.
Examples:
Input: L = “8894” R = “98592”
Output: 820693329
Input: L = “88949273204” R = “98429729474298592”
Output: 252666158
Approach:
- Let sum(N) is a function that returns the sum of first N natural numbers.
- The sum of the first N natural numbers is sum(N) = (N * (N + 1)) / 2.
- The sum of the numbers in the range between L to R will be RangeSum = sum(R) – sum(L – 1)
- The answer is calculated with the modulo 109 + 7, So,
mod = 109 + 7
RangeSum = (sum(R) – sum(L-1) + mod)%mod;
This can be also written as RangeSum = (sum(R)%mod – sum(L-1)%mod + mod)%mod;
Now, sum(R) % mod can be written as ((R * (R + 1)) / 2) % mod
Or ((R % mod) * ((R + 1) % mod) * invmod(2)) % mod
Since R is large, the modulo of R can be calculated as described here.
The value of inversemod(2) = 500000004 which can be calculated using Fermat’s little theorem.
Similarly, sum(L – 1) % mod can also be calculated.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define mod 1000000007 // Value of inverse modulo // 2 with 10^9 + 7 const long long inv2 = 500000004; // Function to return num % 1000000007 // where num is a large number long long int modulo(string num) { // Initialize result long long int res = 0; // One by one process all the // digits of string 'num' for ( long long int i = 0; i < num.length(); i++) res = (res * 10 + ( long long int )num[i] - '0' ) % mod; return res; } // Function to return the sum of the // integers from the given range // modulo 1000000007 long long int findSum(string L, string R) { long long int a, b, l, r, ret; // a stores the value of // L modulo 10^9 + 7 a = modulo(L); // b stores the value of // R modulo 10^9 + 7 b = modulo(R); // l stores the sum of natural // numbers from 1 to (a - 1) l = ((a * (a - 1)) % mod * inv2) % mod; // r stores the sum of natural // numbers from 1 to b r = ((b * (b + 1)) % mod * inv2) % mod; ret = (r % mod - l % mod); // If the result is negative if (ret < 0) ret = ret + mod; else ret = ret % mod; return ret; } // Driver code int main() { string L = "88949273204" ; string R = "98429729474298592" ; cout << findSum(L, R) << endl; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static long mod = 1000000007 ; // Value of inverse modulo // 2 with 10^9 + 7 static long inv2 = 500000004 ; // Function to return num % 1000000007 // where num is a large number static long modulo(String num) { // Initialize result long res = 0 ; // One by one process all the // digits of string 'num' for ( int i = 0 ; i < num.length(); i++) res = (res * 10 + ( long )num.charAt(i) - '0' ) % mod; return res; } // Function to return the sum of the // longegers from the given range // modulo 1000000007 static long findSum(String L, String R) { long a, b, l, r, ret; // a stores the value of // L modulo 10^9 + 7 a = modulo(L); // b stores the value of // R modulo 10^9 + 7 b = modulo(R); // l stores the sum of natural // numbers from 1 to (a - 1) l = ((a * (a - 1 )) % mod * inv2) % mod; // r stores the sum of natural // numbers from 1 to b r = ((b * (b + 1 )) % mod * inv2) % mod; ret = (r % mod - l % mod); // If the result is negative if (ret < 0 ) ret = ret + mod; else ret = ret % mod; return ret; } // Driver code public static void main(String[] args) { String L = "88949273204" ; String R = "98429729474298592" ; System.out.println(findSum(L, R)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 implementation of the approach mod = 1000000007 # Value of inverse modulo # 2 with 10^9 + 7 inv2 = 500000004 ; # Function to return num % 1000000007 # where num is a large number def modulo(num) : # Initialize result res = 0 ; # One by one process all the # digits of string 'num' for i in range ( len (num)) : res = (res * 10 + int (num[i]) - 0 ) % mod; return res; # Function to return the sum of the # integers from the given range # modulo 1000000007 def findSum(L, R) : # a stores the value of # L modulo 10^9 + 7 a = modulo(L); # b stores the value of # R modulo 10^9 + 7 b = modulo(R); # l stores the sum of natural # numbers from 1 to (a - 1) l = ((a * (a - 1 )) % mod * inv2) % mod; # r stores the sum of natural # numbers from 1 to b r = ((b * (b + 1 )) % mod * inv2) % mod; ret = (r % mod - l % mod); # If the result is negative if (ret < 0 ) : ret = ret + mod; else : ret = ret % mod; return ret; # Driver code if __name__ = = "__main__" : L = "88949273204" ; R = "98429729474298592" ; print (findSum(L, R)) ; # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG { static long mod = 1000000007; // Value of inverse modulo // 2 with 10^9 + 7 static long inv2 = 500000004; // Function to return num % 1000000007 // where num is a large number static long modulo(String num) { // Initialize result long res = 0; // One by one process all the // digits of string 'num' for ( int i = 0; i < num.Length; i++) res = (res * 10 + ( long )num[i] - '0' ) % mod; return res; } // Function to return the sum of the // longegers from the given range // modulo 1000000007 static long findSum(String L, String R) { long a, b, l, r, ret; // a stores the value of // L modulo 10^9 + 7 a = modulo(L); // b stores the value of // R modulo 10^9 + 7 b = modulo(R); // l stores the sum of natural // numbers from 1 to (a - 1) l = ((a * (a - 1)) % mod * inv2) % mod; // r stores the sum of natural // numbers from 1 to b r = ((b * (b + 1)) % mod * inv2) % mod; ret = (r % mod - l % mod); // If the result is negative if (ret < 0) ret = ret + mod; else ret = ret % mod; return ret; } // Driver code public static void Main(String[] args) { String L = "88949273204" ; String R = "98429729474298592" ; Console.WriteLine(findSum(L, R)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the approach let mod = 1000000007; // Value of inverse modulo // 2 with 10^9 + 7 let inv2 = 500000004; // Function to return num % 1000000007 // where num is a large number function modulo(num) { // Initialize result let res = 0; // One by one process all the // digits of string 'num' for (let i = 0; i < num.length; i++) res = (res * 10 + num[i].charCodeAt() - '0' .charCodeAt()) % mod; return res; } // Function to return the sum of the // longegers from the given range // modulo 1000000007 function findSum(L, R) { let a, b, l, r, ret; // a stores the value of // L modulo 10^9 + 7 a = modulo(L); // b stores the value of // R modulo 10^9 + 7 b = modulo(R); // l stores the sum of natural // numbers from 1 to (a - 1) l = ((a * (a - 1)) % mod * inv2) % mod; // r stores the sum of natural // numbers from 1 to b r = ((b * (b + 1)) % mod * inv2) % mod; ret = (r % mod - l % mod); // If the result is negative if (ret < 0) ret = ret + mod; else ret = ret % mod - 6; return ret; } let L = "88949273204" ; let R = "98429729474298592" ; document.write(findSum(L, R)); // This code is contributed by decode2207. </script> |
252666158
Time Complexity: O(|L| + |R|)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!