Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AISum of all elements repeating ‘k’ times in an array

Sum of all elements repeating ‘k’ times in an array

Given an array, we have to find the sum of all the elements repeating k times in an array. We need to consider every repeating element just once in the sum.

Examples: 

Input : arr[] = {2, 3, 9, 9}
            k = 1
Output : 5
2 + 3 = 5

Input : arr[] = {9, 8, 8, 8, 10, 4}
          k = 3
Output : 8

One simple solution is to use two nested loops to count the occurrences of every element. While counting, we need to consider an element only if it is not already considered.

Implementation:

C++




// C++ program find sum of elements that
// appear k times.
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the sum
int sumKRepeating(int arr[], int n, int k)
{
    int sum = 0;
 
    // To keep track of processed elements
    vector<bool> visited(n, false);
 
    // initializing count equal to zero
    for (int i = 0; i < n; i++) {
 
        // If arr[i] already processed
        if (visited[i] == true)
            continue;
 
        // counting occurrences of arr[i]
        int count = 1;
        for (int j = i + 1; j < n; j++) {           
            if (arr[i] == arr[j]) {
                count++;
                visited[j] = true;
            }
        }
   
        if (count == k)
           sum += arr[i];
    }
 
    return sum;
}
 
// Driver code
int main()
{
    int arr[] = { 9, 9, 10, 11, 8, 8, 9, 8 };
    int n = sizeof(arr)/sizeof(arr[0]);
    int k = 3;
    cout << sumKRepeating(arr, n, k);
    return 0;
}


Java




// Java program find sum of
// elements that appear k times.
import java.util.*;
 
class GFG
{
// Function to count the sum
static int sumKRepeating(int arr[],
                         int n, int k)
{
    int sum = 0;
 
    // To keep track of
    // processed elements
    Vector<Boolean> visited = new Vector<Boolean>();
     
    for (int i = 0; i < n; i++)
    visited.add(false);
 
    // initializing count
    // equal to zero
    for (int i = 0; i < n; i++)
    {
 
        // If arr[i] already processed
        if (visited.get(i) == true)
            continue;
 
        // counting occurrences of arr[i]
        int count = 1;
        for (int j = i + 1; j < n; j++)
        {        
            if (arr[i] == arr[j])
            {
                count++;
                visited.add(j, true);
            }
        }
 
        if (count == k)
        sum += arr[i];
    }
 
    return sum;
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 9, 9, 10, 11,
                  8, 8, 9, 8 };
    int n = arr.length;
    int k = 3;
    System.out.println(sumKRepeating(arr, n, k));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python 3 program find sum of elements
# that appear k times.
 
# Function to count the sum
def sumKRepeating(arr, n, k):
    sum = 0
 
    # To keep track of processed elements
    visited = [False for i in range(n)]
 
    # initializing count equal to zero
    for i in range(0, n, 1):
         
        # If arr[i] already processed
        if (visited[i] == True):
            continue
 
        # counting occurrences of arr[i]
        count = 1
        for j in range(i + 1, n, 1):
            if (arr[i] == arr[j]):
                count += 1
                visited[j] = True
     
        if (count == k):
            sum += arr[i]
 
    return sum
 
# Driver code
if __name__ == '__main__':
    arr = [9, 9, 10, 11, 8, 8, 9, 8]
    n = len(arr)
    k = 3
    print(sumKRepeating(arr, n, k))
 
# This code is contributed by
# Shashank_Sharma


C#




// c# program find sum of
// elements that appear k times.
using System;
using System.Collections.Generic;
 
class GFG
{
// Function to count the sum
public static int sumKRepeating(int[] arr,
                                int n, int k)
{
    int sum = 0;
 
    // To keep track of
    // processed elements
    List<bool> visited = new List<bool>();
 
    for (int i = 0; i < n; i++)
    {
        visited.Add(false);
    }
 
    // initializing count
    // equal to zero
    for (int i = 0; i < n; i++)
    {
 
        // If arr[i] already processed
        if (visited[i] == true)
        {
            continue;
        }
 
        // counting occurrences of arr[i]
        int count = 1;
        for (int j = i + 1; j < n; j++)
        {
            if (arr[i] == arr[j])
            {
                count++;
                visited.Insert(j, true);
            }
        }
 
        if (count == k)
        {
            sum += arr[i];
        }
    }
 
    return sum;
}
 
// Driver code
public static void Main(string[] args)
{
    int[] arr = new int[] {9, 9, 10, 11,
                           8, 8, 9, 8};
    int n = arr.Length;
    int k = 3;
    Console.WriteLine(sumKRepeating(arr, n, k));
}
}
 
// This code is contributed
// by Shrikant13


Javascript




<script>
// Javascript program find sum of
// elements that appear k times.
 
// Function to count the sum
function sumKRepeating(arr,n,k)
{
    let sum = 0;
   
    // To keep track of
    // processed elements
    let visited = [];
       
    for (let i = 0; i < n; i++)
        visited.push(false);
   
    // initializing count
    // equal to zero
    for (let i = 0; i < n; i++)
    {
   
        // If arr[i] already processed
        if (visited[i] == true)
            continue;
   
        // counting occurrences of arr[i]
        let count = 1;
        for (let j = i + 1; j < n; j++)
        {        
            if (arr[i] == arr[j])
            {
                count++;
                visited[j]= true;
            }
        }
   
        if (count == k)
            sum += arr[i];
    }
   
    return sum;
}
 
// Driver code
let arr=[9, 9, 10, 11,
                  8, 8, 9, 8 ];
                   
let n = arr.length;
let k = 3;
document.write(sumKRepeating(arr, n, k));
 
// This code is contributed by patel2127
</script>


Output

17

Complexity Analysis:

  • Time Complexity : O(n*n) 
  • Auxiliary Space : O(n)

An efficient solution is to use hashing. We count frequencies of all items. Then we traverse hash table and sum those items whose count of occurrences is k. 

Implementation:

C++




// C++ program find sum of elements that
// appear k times.
#include <bits/stdc++.h>
using namespace std;
 
// Returns sum of k appearing elements.
int sumKRepeating(int arr[], int n, int k)
{
   int sum = 0;
 
   // Count frequencies of all items
   unordered_map<int, int> mp;
   for (int i=0; i<n; i++)
      mp[arr[i]]++;
 
   // Sum items with frequencies equal to k.
   for (auto x : mp)
     if (x.second == k)
        sum += x.first;
   return sum;
}
 
// Driver code
int main()
{
    int arr[] = { 9, 9, 10, 11, 8, 8, 9, 8 };
    int n = sizeof(arr)/sizeof(arr[0]);
    int k = 3;
    cout << sumKRepeating(arr, n, k);
    return 0;
}


Java




// Java program find sum of
// elements that appear k times.
import java.util.HashMap;
import java.util.Map;
 
class GfG
{
 
    // Returns sum of k appearing elements.
    static int sumKRepeating(int arr[], int n, int k)
    {
        int sum = 0;
         
        // Count frequencies of all items
        HashMap<Integer, Integer> mp = new HashMap<>();
        for (int i=0; i<n; i++)
        {
            if (!mp.containsKey(arr[i]))
                mp.put(arr[i], 0);
            mp.put(arr[i], mp.get(arr[i]) + 1);
        }
         
        // Sum items with frequencies equal to k.
        for (Integer x : mp.keySet())
            if (mp.get(x) == k)
                sum += x;
        return sum;
    }
 
    // Driver code
    public static void main(String []args)
    {
         
        int arr[] = { 9, 9, 10, 11, 8, 8, 9, 8 };
        int n = arr.length;
        int k = 3;
 
        System.out.println(sumKRepeating(arr, n, k));
    }
}
 
// This code is contributed by Rituraj Jain


Python3




# Python3 program find Sum of elements
# that appear k times.
import math as mt
 
# Returns Sum of k appearing elements.
def sumKRepeating(arr, n, k):
    Sum = 0
 
# Count frequencies of all items
    mp = dict()
    for i in range(n):
        if arr[i] in mp.keys():
            mp[arr[i]] += 1
        else:
            mp[arr[i]] = 1
                 
# Sum items with frequencies equal to k.
    for x in mp:
        if (mp[x] == k):
            Sum += x
    return Sum
 
# Driver code
arr = [ 9, 9, 10, 11, 8, 8, 9, 8 ]
n = len(arr)
k = 3
print(sumKRepeating(arr, n, k))
 
# This code is contributed
# by Mohit kumar 29


C#




// C# program find sum of
// elements that appear k times.
using System;
using System.Collections.Generic;
class GfG
{
 
    // Returns sum of k appearing elements.
    static int sumKRepeating(int []arr, int n, int k)
    {
        int sum = 0;
         
        // Count frequencies of all items
        Dictionary<int,int> mp = new Dictionary<int,int>();
        for (int i = 0 ; i < n; i++)
        {
            if(mp.ContainsKey(arr[i]))
            {
                var val = mp[arr[i]];
                mp.Remove(arr[i]);
                mp.Add(arr[i], val + 1);
            }
            else
            {
                mp.Add(arr[i], 1);
            }
        }
        // Sum items with frequencies equal to k.
        foreach(KeyValuePair<int, int> entry in mp)
        {
            if(entry.Value >= k)
            {
                sum += entry.Key;
            }
        }
        return sum;
    }
 
    // Driver code
    public static void Main(String []args)
    {
         
        int []arr = { 9, 9, 10, 11, 8, 8, 9, 8 };
        int n = arr.Length;
        int k = 3;
 
        Console.WriteLine(sumKRepeating(arr, n, k));
    }
}
 
// This code contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript program find sum of
// elements that appear k times.
 
// Returns sum of k appearing elements.
function sumKRepeating(arr,n,k)
{
    let sum = 0;
          
        // Count frequencies of all items
        let mp = new Map();
        for (let i=0; i<n; i++)
        {
            if (!mp.has(arr[i]))
                mp.set(arr[i], 0);
            mp.set(arr[i], mp.get(arr[i]) + 1);
        }
          
        // Sum items with frequencies equal to k.
        for (let [key, value] of mp.entries())
            if (mp.get(key) == k)
                sum += key;
        return sum;
}
 
// Driver code
let arr=[9, 9, 10, 11, 8, 8, 9, 8];
let n = arr.length;
let k = 3;
document.write(sumKRepeating(arr, n, k));
 
 
// This code is contributed by unknown2108
 
</script>


Output

17

Complexity Analysis

  • Time Complexity : O(n) 
  • Auxiliary Space : O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments