Saturday, January 11, 2025
Google search engine
HomeData Modelling & AISum of all elements in an array between zeros

Sum of all elements in an array between zeros

Given an array arr[] of N integers, the task is to find the sum of all elements between two zeros in the given array. If possible, then print all the sum, else print “-1”.
Note: There is no continuous zero in the given array.

Examples:  

Input: arr[] = { 1, 0, 3, 4, 0, 4, 4, 0, 2, 1, 4, 0, 3 } 
Output: 7 8 7 
Explanation: 
The sum of elements between every zero are: 
3 + 4 = 7 
4 + 4 = 8 
2 + 1 + 4 = 7

Input: arr[] = { 1, 3, 4, 6, 0} 
Output: -1  

Approach:  

  1. Traverse the given array arr[] and find the first index with element 0.
  2. If any element with the value zero occurs, then start storing the sum of elements after it in a vector(say A[]) until the next zero occurs.
  3. Repeat the above steps for every zero that occurs.
  4. Print the elements stored in A[].

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include "bits/stdc++.h"
using namespace std;
 
// Function to find the sum between two
// zeros in the given array arr[]
void sumBetweenZero(int arr[], int N)
{
 
    int i = 0;
 
    // To store the sum of element
    // between two zeros
    vector<int> A;
 
    // To store the sum
    int sum = 0;
 
    // Find first index of 0
    for (i = 0; i < N; i++) {
        if (arr[i] == 0) {
            i++;
            break;
        }
    }
 
    // Traverse the given array arr[]
    for (; i < N; i++) {
 
        // If 0 occurs then add it to A[]
        if (arr[i] == 0) {
            A.push_back(sum);
            sum = 0;
        }
 
        // Else add element to the sum
        else {
            sum += arr[i];
        }
    }
 
    // Print all the sum stored in A
    for (int i = 0; i < A.size(); i++) {
        cout << A[i] << ' ';
    }
 
    // If there is no such element print -1
    if (A.size() == 0)
        cout << "-1";
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 0, 3, 4, 0, 4, 4,
                  0, 2, 1, 4, 0, 3 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    sumBetweenZero(arr, N);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find the sum between two
// zeros in the given array arr[]
static void sumBetweenZero(int arr[], int N)
{
    int i = 0;
 
    // To store the sum of element
    // between two zeros
    Vector<Integer> A = new Vector<Integer>();
 
    // To store the sum
    int sum = 0;
 
    // Find first index of 0
    for(i = 0; i < N; i++)
    {
       if (arr[i] == 0)
       {
           i++;
           break;
       }
    }
 
    // Traverse the given array arr[]
    for(; i < N; i++)
    {
        
       // If 0 occurs then add it to A[]
       if (arr[i] == 0)
       {
           A.add(sum);
           sum = 0;
       }
        
       // Else add element to the sum
       else
       {
           sum += arr[i];
       }
    }
 
    // Print all the sum stored in A
    for(int j = 0; j < A.size(); j++)
    {
       System.out.print(A.get(j) + " ");
    }
 
    // If there is no such element print -1
    if (A.size() == 0)
        System.out.print("-1");
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 1, 0, 3, 4, 0, 4, 4,
                  0, 2, 1, 4, 0, 3 };
    int N = arr.length;
 
    // Function call
    sumBetweenZero(arr, N);
}
}
 
// This code is contributed by gauravrajput1


Python3




#Python3 program for the above approach
 
# Function to find the sum between two
# zeros in the given array arr[]
def sumBetweenZero(arr, N):
    i = 0
 
    # To store the sum of the element
    # between two zeros
    A = []
 
    # To store the sum
    sum = 0
 
    # Find first index of 0
    for i in range(N):
        if (arr[i] == 0):
            i += 1
            break
    k = i
 
    # Traverse the given array arr[]
    for i in range(k, N, 1):
         
        # If 0 occurs then add it to A[]
        if (arr[i] == 0):
            A.append(sum)
            sum = 0
 
        # Else add element to the sum
        else:
            sum += arr[i]
 
    # Print all the sum stored in A
    for i in range(len(A)):
        print(A[i], end = ' ')
 
    # If there is no such element print -1
    if (len(A) == 0):
        print("-1")
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 1, 0, 3, 4, 0, 4, 4,
            0, 2, 1, 4, 0, 3 ]
 
    N = len(arr)
 
    # Function call
    sumBetweenZero(arr, N)
 
# This code is contributed by Bhupendra_Singh


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the sum between two
// zeros in the given array []arr
static void sumBetweenZero(int []arr, int N)
{
    int i = 0;
 
    // To store the sum of element
    // between two zeros
    List<int> A = new List<int>();
 
    // To store the sum
    int sum = 0;
 
    // Find first index of 0
    for(i = 0; i < N; i++)
    {
       if (arr[i] == 0)
       {
           i++;
           break;
       }
    }
 
    // Traverse the given array []arr
    for(; i < N; i++)
    {
         
       // If 0 occurs then add it to []A
       if (arr[i] == 0)
       {
           A.Add(sum);
           sum = 0;
       }
        
       // Else add element to the sum
       else
       {
           sum += arr[i];
       }
    }
     
    // Print all the sum stored in A
    for(int j = 0; j < A.Count; j++)
    {
       Console.Write(A[j] + " ");
    }
 
    // If there is no such element print -1
    if (A.Count == 0)
        Console.Write("-1");
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 1, 0, 3, 4, 0, 4, 4,
                  0, 2, 1, 4, 0, 3 };
    int N = arr.Length;
 
    // Function call
    sumBetweenZero(arr, N);
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// Javascript program for the above approach
 
 
// Function to find the sum between two
// zeros in the given array arr[]
function sumBetweenZero(arr, N) {
 
    let i = 0;
 
    // To store the sum of element
    // between two zeros
    let A = new Array();
 
    // To store the sum
    let sum = 0;
 
    // Find first index of 0
    for (i = 0; i < N; i++) {
        if (arr[i] == 0) {
            i++;
            break;
        }
    }
 
    // Traverse the given array arr[]
    for (; i < N; i++) {
 
        // If 0 occurs then add it to A[]
        if (arr[i] == 0) {
            A.push(sum);
            sum = 0;
        }
 
        // Else add element to the sum
        else {
            sum += arr[i];
        }
    }
 
    // Print all the sum stored in A
    for (let i = 0; i < A.length; i++) {
        document.write(A[i] + ' ');
    }
 
    // If there is no such element print -1
    if (A.length == 0)
        document.write("-1");
}
 
// Driver Code
 
let arr = [1, 0, 3, 4, 0, 4, 4,
    0, 2, 1, 4, 0, 3];
 
let N = arr.length;
 
// Function call
sumBetweenZero(arr, N);
 
// This code is contributed by _saurabh_jaiswal
</script>


Output: 

7 8 7

 

Time Complexity: O(N), where N is the length of the array.

Space Complexity: O(N) as ans vector has been created.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments