Given an array arr[] of N integers, the task is to choose the two subsequences of equal lengths such that the first subsequence must have all the unique elements and the second subsequence must have all the same elements. Print the maximum length of the subsequence pair.
Examples:
Input: arr[] = {1, 2, 3, 1, 2, 3, 3, 3}Â
Output: 3Â
Explanation:Â
The first subsequence consists of elements {1, 2, 3}.Â
The second subsequence consists of elements {3, 3, 3}.Input: arr[] = {2, 2, 2, 3}Â
Output: 2Â
Explanation:Â
The first subsequence consists of elements {2, 3}.Â
The second subsequence consists of elements {2, 2}.
Approach:
- Count the maximum frequency(say f) of the element in the given array.
- Count the distinct elements(say d) present in the array.
- To make both the subsequence of equal length with the given property, then the size of the first subsequence cannot exceed d, and the size of the second subsequence cannot exceed f.
- The maximum value of the subsequence is given on the basis of two cases below:Â
- The subsequence with distinct elements must have an element with maximum frequency. Therefore, the minimum of (d, f – 1) is the possible length of a subsequence with the given property.
- If the length of a subsequence with a distinct element is greater than maximum frequency, then, the minimum of (d – 1, f) is the possible length of a subsequence with the given property.
- The maximum value in the above two cases is the maximum length of a subsequence with the given property.
Below is the implementation of the above approach:
C++
// C++ program for the above approach Â
#include <bits/stdc++.h> using namespace std; Â
// Function to find the maximum length // of subsequences with given property int maximumSubsequence( int arr[], int N) {     // To store the frequency     unordered_map< int , int > M; Â
    // Traverse the array to store the     // frequency     for ( int i = 0; i < N; i++) {         M[arr[i]]++;     } Â
    // M.size() given count of distinct     // element in arr[]     int distinct_size = M.size();     int maxFreq = 1; Â
    // Traverse map to find max frequency     for ( auto & it : M) { Â
        maxFreq = max(maxFreq, it.second);     } Â
    // Find the maximum length on the basis     // of two cases in the approach Â
    cout << max(min(distinct_size, maxFreq - 1),                 min(distinct_size - 1, maxFreq)); } Â
// Driver Code int main() { Â Â Â Â int arr[] = { 1, 2, 3, 4, 4, 4, 4, 4, 5 }; Â Â Â Â int N = sizeof (arr) / sizeof (arr[0]); Â
    // Function call     maximumSubsequence(arr, N);     return 0; } |
Java
// Java program for the above approach import java.util.*; Â
class GFG{ Â
// Function to find the maximum length // of subsequences with given property static void maximumSubsequence( int arr[], int N) {          // To store the frequency     HashMap<Integer,             Integer> M = new HashMap<Integer,                                      Integer>(); Â
    // Traverse the array to store the     // frequency     for ( int i = 0 ; i < N; i++)     {         if (M.containsKey(arr[i]))         {             M.put(arr[i], M.get(arr[i]) + 1 );         }         else         {             M.put(arr[i], 1 );         }     } Â
    // M.size() given count of distinct     // element in arr[]     int distinct_size = M.size();     int maxFreq = 1 ; Â
    // Traverse map to find max frequency     for (Map.Entry<Integer, Integer> it : M.entrySet())     {         maxFreq = Math.max(maxFreq, it.getValue());     } Â
    // Find the maximum length on the basis     // of two cases in the approach Â
    System.out.print(Math.max(         Math.min(distinct_size, maxFreq - 1 ),         Math.min(distinct_size - 1 , maxFreq))); } Â
// Driver Code public static void main(String[] args) { Â Â Â Â int arr[] = { 1 , 2 , 3 , 4 , 4 , 4 , 4 , 4 , 5 }; Â Â Â Â int N = arr.length; Â
    // Function call     maximumSubsequence(arr, N); } } Â
// This code is contributed by amal kumar choubey |
Python3
# Python 3 program for the above approach Â
# Function to find the maximum length # of subsequences with given property def maximumSubsequence(arr, N):          # To store the frequency     M = {i : 0 for i in range ( 100 )} Â
    # Traverse the array to store the     # frequency     for i in range (N):         M[arr[i]] + = 1 Â
    # M.size() given count of distinct     # element in arr[]     distinct_size = len (M)     maxFreq = 1 Â
    # Traverse map to find max frequency     for value in M.values():         maxFreq = max (maxFreq, value) Â
    # Find the maximum length on the basis     # of two cases in the approach Â
    print ( max ( min (distinct_size, maxFreq - 1 ),           min (distinct_size - 1 , maxFreq))) Â
# Driver Code if __name__ = = '__main__' : Â Â Â Â Â Â Â Â Â arr = [ 1 , 2 , 3 , 4 , 4 , 4 , 4 , 5 ] Â Â Â Â N = len (arr) Â
    # Function call     maximumSubsequence(arr, N) Â
# This code is contributed by Samarth |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ Â
// Function to find the maximum length // of subsequences with given property static void maximumSubsequence( int []arr, int N) {          // To store the frequency     Dictionary< int ,                int > M = new Dictionary< int ,                                        int >(); Â
    // Traverse the array to store the     // frequency     for ( int i = 0; i < N; i++)     {         if (M.ContainsKey(arr[i]))         {             M[arr[i]] = M[arr[i]] + 1;         }         else         {             M.Add(arr[i], 1);         }     } Â
    // M.Count given count of distinct     // element in []arr     int distinct_size = M.Count;     int maxFreq = 1; Â
    // Traverse map to find max frequency     foreach (KeyValuePair< int , int > m in M)     {         maxFreq = Math.Max(maxFreq, m.Value);     } Â
    // Find the maximum length on the basis     // of two cases in the approach Â
    Console.Write(Math.Max(         Math.Min(distinct_size, maxFreq - 1),         Math.Min(distinct_size - 1, maxFreq))); } Â
// Driver Code public static void Main(String[] args) { Â Â Â Â int []arr = { 1, 2, 3, 4, 4, 4, 4, 4, 5 }; Â Â Â Â int N = arr.Length; Â
    // Function call     maximumSubsequence(arr, N); } } Â
// This code is contributed by Rohit_ranjan |
Javascript
<script> // Javascript program for the above approach Â
// Function to find the maximum length // of subsequences with given property function maximumSubsequence(arr, N) {     // To store the frequency     let M = new Map(); Â
    // Traverse the array to store the     // frequency     for (let i = 0; i < N; i++) {         if (M.has(arr[i])) {             M.set(arr[i], M.get(arr[i]) + 1);         }         else {             M.set(arr[i], 1);         }     } Â
    // M.size() given count of distinct     // element in arr[]     let distinct_size = M.size;     let maxFreq = 1; Â
    // Traverse map to find max frequency     for (let it of M) { Â
        maxFreq = Math.max(maxFreq, it[1]);     } Â
    // Find the maximum length on the basis     // of two cases in the approach Â
    document.write(Math.max(Math.min(distinct_size, maxFreq - 1), Math.min(distinct_size - 1, maxFreq))); } Â
// Driver Code Â
let arr = [1, 2, 3, 4, 4, 4, 4, 4, 5]; let N = arr.length; Â
// Function call maximumSubsequence(arr, N); Â
// This code is contributed by _saurabh_jaiswal </script> |
4
Â
Time Complexity: O(N), where N is the number of elements in the array.Â
Auxiliary Space Complexity: O(N), where N is the number of elements in the array.
Â
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!