Thursday, December 26, 2024
Google search engine
HomeData Modelling & AISubsequence of size k with maximum possible GCD

Subsequence of size k with maximum possible GCD

We are given an array of positive integers and an integer k. Find the maximum possible GCD of a subsequence of size k.

Examples: 

Input : arr[] = [2, 1, 4, 6] k = 3
Output : 2
GCD of [2, 4, 6] is 2

Input : arr[] = [1, 2, 3] k = 3
Output : 1
GCD of [1, 2, 3] is 1 

Method 1 Generate all the subsequences of size k one by one and then find the GCD of all such generated subsequences. Print the largest found GCD.

Method 2 In this method, we maintain a count array to store the count of divisors of every element. We will traverse the given array and for every element, we will calculate its divisors and increment at the index of the count array. The process of computing divisors will take O(sqrt(arr[i])) time, where arr[i] is element in the given array at index i. After the whole traversal, we can simply traverse the count array from the last index to index 1. If we find an index with a value equal to or greater than k, then this means that it is a divisor of at least k elements and also the max GCD. 

Steps to solve this problem:

1. declare a variable and store maximum element of the array in it.

2. declare an array divisors of size high+1 and initialize it with 0.

3. iterate through i=0 till n:

         *iterate through j=1 till sqrt(arr[i]):

                    *check if arr[i]%j is equal to 0 than divisors[j]++ and divisors[arr[i]/j]++ if j is not equal to arr[i]/j.

4. iterate through i=high till i>=1:

         *check if divisors[i]>=k than return i.

Implementation:

C++




// CPP program to find subsequence of size
// k with maximum possible GCD.
#include <bits/stdc++.h>
using namespace std;
  
// function to find GCD of sub sequence of
// size k with max GCD in the array
int findMaxGCD(int arr[], int n, int k)
{
    // Computing highest element
    int high = *max_element(arr, arr+n);
  
    // Array to store the count of divisors
    // i.e. Potential GCDs
    int divisors[high + 1] = { 0 };
  
    // Iterating over every element
    for (int i = 0; i < n; i++) {
  
        // Calculating all the divisors
        for (int j = 1; j <= sqrt(arr[i]); j++) {
  
            // Divisor found
            if (arr[i] % j == 0) {
  
                // Incrementing count for divisor
                divisors[j]++;
  
                // Element/divisor is also a divisor
                // Checking if both divisors are
                // not same
                if (j != arr[i] / j)
                    divisors[arr[i] / j]++;
            }
        }
    }
  
    // Checking the highest potential GCD
    for (int i = high; i >= 1; i--)
  
        // If this divisor can divide at least k
        // numbers, it is a GCD of at least one
        // sub sequence of size k
        if (divisors[i] >= k)
            return i;
}
  
// Driver code
int main()
{
    // Array in which sub sequence with size
    // k with max GCD is to be found
    int arr[] = { 1, 2, 4, 8, 8, 12 };
    int k = 3;
  
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << findMaxGCD(arr, n, k);
    return 0;
}


Java




// Java program to find
// subsequence of size
// k with maximum possible GCD
import java .io.*;
import java .util.*;
  
class GFG
{
  
// function to find GCD of 
// sub sequence of size k
// with max GCD in the array
static int findMaxGCD(int []arr,
                      int n, int k)
{
    Arrays.sort(arr);
      
    // Computing highest element
    int high = arr[n - 1];
  
    // Array to store the 
    // count of divisors
    // i.e. Potential GCDs
    int []divisors = new int[high + 1];
  
    // Iterating over 
    // every element
    for (int i = 0; i < n; i++)
    {
  
        // Calculating all the divisors
        for (int j = 1;             
                 j <= Math.sqrt(arr[i]); 
                 j++)
        {
  
            // Divisor found
            if (arr[i] % j == 0
            {
  
                // Incrementing count
                // for divisor
                divisors[j]++;
  
                // Element/divisor is 
                // also a divisor Checking
                // if both divisors are
                // not same
                if (j != arr[i] / j)
                    divisors[arr[i] / j]++;
            }
        }
    }
  
    // Checking the highest
    // potential GCD
    for (int i = high; i >= 1; i--)
  
        // If this divisor can divide 
        // at least k numbers, it is 
        // a GCD of at least one sub 
        // sequence of size k
        if (divisors[i] >= k)
            return i;
            return 0 ;
}
  
// Driver code
static public void main (String[] args)
{
    // Array in which sub sequence 
    // with size k with max GCD is 
    // to be found
    int []arr = { 1, 2, 4
                  8, 8, 12 };
    int k = 3;
  
    int n = arr.length;
    System.out.println(findMaxGCD(arr, n, k));
}
}
  
// This code is contributed 
// by anuj_67.


Python 3




# Python 3 program to find subsequence 
# of size k with maximum possible GCD.
import math
  
# function to find GCD of sub sequence 
# of size k with max GCD in the array
def findMaxGCD(arr, n, k):
  
    # Computing highest element
    high = max(arr)
  
    # Array to store the count of 
    # divisors i.e. Potential GCDs
    divisors = [0] * (high + 1)
  
    # Iterating over every element
    for i in range(n) :
  
        # Calculating all the divisors
        for j in range(1, int(math.sqrt(arr[i])) + 1):
  
            # Divisor found
            if (arr[i] % j == 0) :
  
                # Incrementing count for divisor
                divisors[j] += 1
  
                # Element/divisor is also a divisor
                # Checking if both divisors are
                # not same
                if (j != arr[i] // j):
                    divisors[arr[i] // j] += 1
  
    # Checking the highest potential GCD
    for i in range(high, 0, -1):
  
        # If this divisor can divide at least k
        # numbers, it is a GCD of at least one
        # sub sequence of size k
        if (divisors[i] >= k):
            return i
  
# Driver code
if __name__ == "__main__":
  
    # Array in which sub sequence with size
    # k with max GCD is to be found
    arr = [ 1, 2, 4, 8, 8, 12 ]
    k = 3
  
    n = len(arr)
    print(findMaxGCD(arr, n, k))
  
# This code is contributed by ita_c


C#




// C# program to find subsequence of size
// k with maximum possible GCD
using System;
using System.Linq;
  
public class GFG {
      
    // function to find GCD of sub sequence of
    // size k with max GCD in the array
    static int findMaxGCD(int []arr, int n, int k)
    {
        // Computing highest element
        int high = arr.Max();
      
        // Array to store the count of divisors
        // i.e. Potential GCDs
        int []divisors = new int[high+1];
      
        // Iterating over every element
        for (int i = 0; i < n; i++) {
      
            // Calculating all the divisors
            for (int j = 1; j <= Math.Sqrt(arr[i]); j++)
            {
      
                // Divisor found
                if (arr[i] % j == 0) {
      
                    // Incrementing count for divisor
                    divisors[j]++;
      
                    // Element/divisor is also a divisor
                    // Checking if both divisors are
                    // not same
                    if (j != arr[i] / j)
                        divisors[arr[i] / j]++;
                }
            }
        }
      
        // Checking the highest potential GCD
        for (int i = high; i >= 1; i--)
      
            // If this divisor can divide at least k
            // numbers, it is a GCD of at least one
            // sub sequence of size k
            if (divisors[i] >= k)
                return i;
                return 0 ;
    }
      
    // Driver code
    static public void Main ()
    {
        // Array in which sub sequence with 
        // size k with max GCD is to be found
        int []arr = { 1, 2, 4, 8, 8, 12 };
        int k = 3;
      
        int n = arr.Length;
        Console.WriteLine(findMaxGCD(arr, n, k));
    }
}
  
// This code is contributed by anuj_67.


Javascript




<script>
// Javascript program to find
// subsequence of size
// k with maximum possible GCD
      
    // function to find GCD of 
// sub sequence of size k
// with max GCD in the array
    function findMaxGCD(arr,n,k)
    {
        arr.sort(function(a,b){return a-b;});
        
    // Computing highest element
    let high = arr[n - 1];
    
    // Array to store the 
    // count of divisors
    // i.e. Potential GCDs
    let divisors = new Array(high + 1);
    for(let i=0;i<divisors.length;i++)
    {
        divisors[i]=0;
    }
    
    // Iterating over 
    // every element
    for (let i = 0; i < n; i++)
    {
    
        // Calculating all the divisors
        for (let j = 1;             
                 j <= Math.sqrt(arr[i]); 
                 j++)
        {
    
            // Divisor found
            if (arr[i] % j == 0) 
            {
    
                // Incrementing count
                // for divisor
                divisors[j]++;
    
                // Element/divisor is 
                // also a divisor Checking
                // if both divisors are
                // not same
                if (j != Math.floor(arr[i] / j))
                    divisors[(Math.floor(arr[i] / j))]++;
            }
        }
    }
    
    // Checking the highest
    // potential GCD
    for (let i = high; i >= 1; i--)
    
        // If this divisor can divide 
        // at least k numbers, it is 
        // a GCD of at least one sub 
        // sequence of size k
        if (divisors[i] >= k)
            return i;
            return 0 ;
    }
      
      
    // Driver code
    let arr=[1, 2, 4, 
                  8, 8, 12];
    let k = 3;
    let n = arr.length;
    document.write(findMaxGCD(arr, n, k));
      
      
    // This code is contributed by rag2127
</script>


Output

4
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments