Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AISub-tree with minimum color difference in a 2-coloured tree

Sub-tree with minimum color difference in a 2-coloured tree

A tree with N nodes and N-1 edges is given with 2 different colours for its nodes. 
Find the sub-tree with minimum colour difference i.e. abs(1-colour nodes – 2-colour nodes) is minimum. 

Example:

Input : 
Edges : 1 2
        1 3
        2 4
        3 5
Colours : 1 1 2 2 1 [1-based indexing where 
                    index denotes the node]
Output : 2
Explanation : The sub-tree {1-2} and {1-2-3-5}
have color difference of 2. Sub-tree {1-2} has two
1-colour nodes and zero 2-colour nodes. So, color 
difference is 2. Sub-tree {1-2-3-5} has three 1-colour
nodes and one 2-colour nodes. So color diff = 2.

Method 1 : The problem can be solved by checking every possible sub-tree from every node of the tree. This will take exponential time as we will check for sub-trees from every node.

Method 2 : (Efficient) If we observe, we are solving a portion of the tree several times. This produces recurring sub-problems. We can use Dynamic Programming approach to get the minimum color difference in one traversal. To make things simpler, we can have color values as 1 and -1. Now, if we have a sub-tree with both colored nodes equal, our sum of colors will be 0. To get the minimum difference, we should have maximum negative sum or maximum positive sum. 

  • Case 1 When we need to have a sub-tree with maximum sum : We take a node if its value > 0, i.e. sum(parent) += max(0, sum(child))
  • Case 2 When we need to have a sub-tree with minimum sum(or max negative sum) : We take a node if its value < 0, i.e. sum(parent) += min(0, sum(child))

To get the minimum sum, we can interchange the colors of nodes, i.e. -1 becomes 1 and vice-versa.

Below is the implementation : 

C++




// CPP code to find the sub-tree with minimum color
// difference in a 2-coloured tree
#include <bits/stdc++.h>
using namespace std;
 
// Tree traversal to compute minimum difference
void dfs(int node, int parent, vector<int> tree[],
                    int colour[], int answer[])
{
    // Initial min difference is the color of node
    answer[node] = colour[node];
 
    // Traversing its children
    for (auto u : tree[node]) {
 
        // Not traversing the parent
        if (u == parent)
            continue;
 
        dfs(u, node, tree, colour, answer);
 
        // If the child is adding positively to
        // difference, we include it in the answer
        // Otherwise, we leave the sub-tree and
        // include 0 (nothing) in the answer
        answer[node] += max(answer[u], 0);
    }
}
 
int maxDiff(vector<int> tree[], int colour[], int N)
{
       int answer[N + 1];
       memset(answer, 0, sizeof(answer));
 
    // DFS for colour difference : 1colour - 2colour
    dfs(1, 0, tree, colour, answer);
 
    // Minimum colour difference is maximum answer value
    int high = 0;
    for (int i = 1; i <= N; i++) {
        high = max(high, answer[i]);
 
        // Clearing the current value
        // to check for colour2 as well
        answer[i] = 0;
    }
 
    // Interchanging the colours
    for (int i = 1; i <= N; i++) {
        if (colour[i] == -1)
            colour[i] = 1;
        else
            colour[i] = -1;
    }
 
    // DFS for colour difference : 2colour - 1colour
    dfs(1, 0, tree, colour, answer);
 
    // Checking if colour2 makes the minimum colour
    // difference
    for (int i = 1; i < N; i++)
        high = max(high, answer[i]);
         
    return high;
}
 
// Driver code
int main()
{
    // Nodes
    int N = 5;
 
    // Adjacency list representation
    vector<int> tree[N + 1];
 
    // Edges
    tree[1].push_back(2);
    tree[2].push_back(1);
 
    tree[1].push_back(3);
    tree[3].push_back(1);
 
    tree[2].push_back(4);
    tree[4].push_back(2);
 
    tree[3].push_back(5);
    tree[5].push_back(3);
 
    // Index represent the colour of that node
    // There is no Node 0, so we start from
    // index 1 to N
    int colour[] = { 0, 1, 1, -1, -1, 1 };
 
    // Printing the result
    cout << maxDiff(tree,  colour,  N);
     
    return 0;
}


Java




// Java code to find the sub-tree
// with minimum color difference
// in a 2-coloured tree
import java.util.*;
class GFG
{
 
// Tree traversal to compute minimum difference
static void dfs(int node, int parent,
                Vector<Integer> tree[], 
                int colour[], int answer[])
{
    // Initial min difference is
    // the color of node
    answer[node] = colour[node];
 
    // Traversing its children
    for (Integer u : tree[node])
    {
 
        // Not traversing the parent
        if (u == parent)
            continue;
 
        dfs(u, node, tree, colour, answer);
 
        // If the child is adding positively to
        // difference, we include it in the answer
        // Otherwise, we leave the sub-tree and
        // include 0 (nothing) in the answer
        answer[node] += Math.max(answer[u], 0);
    }
}
 
static int maxDiff(Vector<Integer> tree[],
                   int colour[], int N)
{
    int []answer = new int[N + 1];
 
    // DFS for colour difference : 1colour - 2colour
    dfs(1, 0, tree, colour, answer);
 
    // Minimum colour difference is
    // maximum answer value
    int high = 0;
    for (int i = 1; i <= N; i++)
    {
        high = Math.max(high, answer[i]);
 
        // Clearing the current value
        // to check for colour2 as well
        answer[i] = 0;
    }
 
    // Interchanging the colours
    for (int i = 1; i <= N; i++)
    {
        if (colour[i] == -1)
            colour[i] = 1;
        else
            colour[i] = -1;
    }
 
    // DFS for colour difference : 2colour - 1colour
    dfs(1, 0, tree, colour, answer);
 
    // Checking if colour2 makes the
    // minimum colour difference
    for (int i = 1; i < N; i++)
        high = Math.max(high, answer[i]);
         
    return high;
}
 
// Driver code
public static void main(String []args)
{
     
    // Nodes
    int N = 5;
 
    // Adjacency list representation
    Vector<Integer> tree[] = new Vector[N + 1];
    for(int i = 0; i < N + 1; i++)
        tree[i] = new Vector<Integer>();
 
    // Edges
    tree[1].add(2);
    tree[2].add(1);
 
    tree[1].add(3);
    tree[3].add(1);
 
    tree[2].add(4);
    tree[4].add(2);
 
    tree[3].add(5);
    tree[5].add(3);
 
    // Index represent the colour of that node
    // There is no Node 0, so we start from
    // index 1 to N
    int colour[] = { 0, 1, 1, -1, -1, 1 };
 
    // Printing the result
    System.out.println(maxDiff(tree, colour, N));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 code to find the sub-tree
# with minimum color difference
# in a 2-coloured tree
 
# Tree traversal to compute minimum difference
def dfs(node, parent, tree, colour, answer):
    # Initial min difference is
    # the color of node
    answer[node] = colour[node]
 
    # Traversing its children
    for u in tree[node]:
 
        # Not traversing the parent
        if (u == parent):
            continue
 
        dfs(u, node, tree, colour, answer)
 
        # If the child is Adding positively to
        # difference, we include it in the answer
        # Otherwise, we leave the sub-tree and
        # include 0 (nothing) in the answer
        answer[node] += max(answer[u], 0)
 
def maxDiff(tree, colour, N):
    answer = [0 for _ in range(N+1)]
 
    # DFS for colour difference : 1colour - 2colour
    dfs(1, 0, tree, colour, answer)
 
    # Minimum colour difference is
    # maximum answer value
    high = 0
    for i in range(1, N+1):
        high = max(high, answer[i])
 
        # Clearing the current value
        # to check for colour2 as well
        answer[i] = 0
 
    # Interchanging the colours
    for i in range(1, N+1):
        if colour[i] == -1:
            colour[i] = 1
        else:
            colour[i] = -1
 
    # DFS for colour difference : 2colour - 1colour
    dfs(1, 0, tree, colour, answer)
 
    # Checking if colour2 makes the
    # minimum colour difference
    for i in range(1, N):
        high = max(high, answer[i])
         
    return high
 
# Driver code
# Nodes
N = 5
 
# Adjacency list representation
tree = [list() for _ in range(N+1)]
 
# Edges
tree[1].append(2)
tree[2].append(1)
tree[1].append(3)
tree[3].append(1)
tree[2].append(4)
tree[4].append(2)
tree[3].append(5)
tree[5].append(3)
 
# Index represent the colour of that node
# There is no Node 0, so we start from
# index 1 to N
colour = [0, 1, 1, -1, -1, 1]
 
# Printing the result
print(maxDiff(tree, colour, N))
 
# This code is contributed by nitibi9839.


C#




// C# code to find the sub-tree
// with minimum color difference
// in a 2-coloured tree
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Tree traversal to compute minimum difference
static void dfs(int node, int parent,
                List<int> []tree,
                int []colour, int []answer)
{
    // Initial min difference is
    // the color of node
    answer[node] = colour[node];
 
    // Traversing its children
    foreach (int u in tree[node])
    {
 
        // Not traversing the parent
        if (u == parent)
            continue;
 
        dfs(u, node, tree, colour, answer);
 
        // If the child is Adding positively to
        // difference, we include it in the answer
        // Otherwise, we leave the sub-tree and
        // include 0 (nothing) in the answer
        answer[node] += Math.Max(answer[u], 0);
    }
}
 
static int maxDiff(List<int> []tree,
                         int []colour, int N)
{
    int []answer = new int[N + 1];
 
    // DFS for colour difference : 1colour - 2colour
    dfs(1, 0, tree, colour, answer);
 
    // Minimum colour difference is
    // maximum answer value
    int high = 0;
    for (int i = 1; i <= N; i++)
    {
        high = Math.Max(high, answer[i]);
 
        // Clearing the current value
        // to check for colour2 as well
        answer[i] = 0;
    }
 
    // Interchanging the colours
    for (int i = 1; i <= N; i++)
    {
        if (colour[i] == -1)
            colour[i] = 1;
        else
            colour[i] = -1;
    }
 
    // DFS for colour difference : 2colour - 1colour
    dfs(1, 0, tree, colour, answer);
 
    // Checking if colour2 makes the
    // minimum colour difference
    for (int i = 1; i < N; i++)
        high = Math.Max(high, answer[i]);
         
    return high;
}
 
// Driver code
public static void Main(String []args)
{
     
    // Nodes
    int N = 5;
 
    // Adjacency list representation
    List<int> []tree = new List<int>[N + 1];
    for(int i = 0; i < N + 1; i++)
        tree[i] = new List<int>();
 
    // Edges
    tree[1].Add(2);
    tree[2].Add(1);
 
    tree[1].Add(3);
    tree[3].Add(1);
 
    tree[2].Add(4);
    tree[4].Add(2);
 
    tree[3].Add(5);
    tree[5].Add(3);
 
    // Index represent the colour of that node
    // There is no Node 0, so we start from
    // index 1 to N
    int []colour = { 0, 1, 1, -1, -1, 1 };
 
    // Printing the result
    Console.WriteLine(maxDiff(tree, colour, N));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// JavaScript code to find the sub-tree
// with minimum color difference
// in a 2-coloured tree
 
// Tree traversal to compute minimum difference
function dfs(node, parent, tree, colour, answer)
{
    // Initial min difference is
    // the color of node
    answer[node] = colour[node];
 
    // Traversing its children
    for(var u of tree[node])
    {
 
        // Not traversing the parent
        if (u == parent)
            continue;
 
        dfs(u, node, tree, colour, answer);
 
        // If the child is Adding positively to
        // difference, we include it in the answer
        // Otherwise, we leave the sub-tree and
        // include 0 (nothing) in the answer
        answer[node] += Math.max(answer[u], 0);
    }
}
 
function maxDiff(tree, colour, N)
{
    var answer = Array(N+1).fill(0);
 
    // DFS for colour difference : 1colour - 2colour
    dfs(1, 0, tree, colour, answer);
 
    // Minimum colour difference is
    // maximum answer value
    var high = 0;
    for (var i = 1; i <= N; i++)
    {
        high = Math.max(high, answer[i]);
 
        // Clearing the current value
        // to check for colour2 as well
        answer[i] = 0;
    }
 
    // Interchanging the colours
    for (var i = 1; i <= N; i++)
    {
        if (colour[i] == -1)
            colour[i] = 1;
        else
            colour[i] = -1;
    }
 
    // DFS for colour difference : 2colour - 1colour
    dfs(1, 0, tree, colour, answer);
 
    // Checking if colour2 makes the
    // minimum colour difference
    for (var i = 1; i < N; i++)
        high = Math.max(high, answer[i]);
         
    return high;
}
 
// Driver code
// Nodes
var N = 5;
// Adjacency list representation
var tree = Array.from(Array(N+1), ()=>Array());
 
// Edges
tree[1].push(2);
tree[2].push(1);
tree[1].push(3);
tree[3].push(1);
tree[2].push(4);
tree[4].push(2);
tree[3].push(5);
tree[5].push(3);
// Index represent the colour of that node
// There is no Node 0, so we start from
// index 1 to N
var colour = [0, 1, 1, -1, -1, 1];
// Printing the result
document.write(maxDiff(tree, colour, N));
 
 
</script>


Output

2

Time complexity: O(n) where n is the number of nodes in the binary tree.
Auxiliary Space: O(n)

This article is contributed by Rohit Thapliyal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments