Monday, January 13, 2025
Google search engine
HomeData Modelling & AIString Range Queries to find the number of subsets equal to a...

String Range Queries to find the number of subsets equal to a given String

Given a string S of length N, and M queries of the following type:

Type 1: 1 L x, 
Indicates update Lth index of string S by character ‘x’.
Type 2: 2 L R str 
Find the number of subsets in range L to R 
which is equal to the string str modulo 1000000007.
Constraints : 
|S| <= 100000, 
M <= 100000, 
1 <= L, R <= |S|, 
|str| <= 26, 
All characters in str are unique, 
S & str consisting of lowercase latin letters. 
 

Examples:  

Input : N = 16, M = 3, S = “geeekkksgskeegks” 
type = 2: L = 1, R = 7, str = “gek” 
type = 1: index = 2, character = ‘x’ 
type = 2: L = 1, R = 7, str = “gek” 
Output : 9 6 4 
query2 : No of subsets in string S i range [1…7] that is equal to gek is 9. 
query1 : string S is changed to gxeekkksgskeegks after second query. 
query2 : No of subsets in string S i range [1…7] that is equal to gek is 6. 
 

Naive Approach : 
Query type 1: We will calculate the frequency of each character of the query string in the range [L…R] and then multiply all the calculated frequencies to get the desired result. 
Query type 2: We will replace the i’th character of the string with the given character. 

Time complexity : 0(m*n)

Efficient Approach :  

  1. Using Segment Tree we can perform both operations in log(n) time. Every node of segment tree will contain frequency of characters in range [L..R].
  2. The function build takes n*log(n) time to create a segment tree with every node containing the frequency of characters of some segment of the string.
  3. The function get returns a vector containing frequency of all characters. Multiplication of all frequency of the given query string modulo 1e9+7 gives the desired result.
  4. The function update decreases the frequency of character placed earlier and increases the frequency of new character present in the nodes of the segment tree by one.
  5. The function add_two_result adds two vector and returns their result.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
   
#define N 400005
#define mod 1000000007
   
vector <int> seg_tree[N];
string str;
   
// A recursive function that constructs 
// Segment Tree for given string
void build(int pos, int st, int en)
{
   
    if (st == en)
    {
        // Increment the frequency of character
        // by one if st is equal to en
        seg_tree[pos][str[st - 1] - 'a']++;
        return ;
    }
  
    int mid = st + en >> 1;
   
    // Build the segment tree for range st to mid
    build(2 * pos, st, mid);
   
    // Build the segment tree for range mid+1 to en
    build(2 * pos + 1, mid + 1, en);
   
    // It stores addition of frequency of 
    // characters of both of its child after
    // segment tree is build
    for (int i = 0; i < 26; i++)
        seg_tree[pos][i] = seg_tree[2 * pos + 1][i]
                             + seg_tree[2 * pos][i];
   
}
   
// A utility function for 
// addition of two vectors
vector <int> add_two_result(vector <int> v1,
                                  vector <int> v2)
{
    vector <int> added_vec(26);
   
    // Adding two vector and storing
    // it in another vector
    for (int i = 0; i < 26; i++)
        added_vec[i] = v1[i] + v2[i];
   
    // Returning final vector
    return added_vec;
   
}
  
// A recursive function that return vector
// which contains frequency of every character
vector <int> get(int pos, int l, int r,
                               int st, int en)
{
    // If segment of this node is 
    // outside the given range
    if (l > en || r < st)
    {
        vector <int> empty(26, 0);
        return  empty;
    }
   
    // If segment of this node is a part
    // of given range, then return the 
    // frequency every character of the segment
    if (st >= l && en <= r)
    {
        return seg_tree[pos];
    }
   
    // getting mid of st and en
    int mid = st + en >> 1;
   
    //storing answer of left child n v1
    vector <int> v1 = get(2 * pos, l, 
                                    r, st, mid);
    //storing answer of left child n v1
    vector <int> v2 = get(2 * pos + 1, 
                             l, r, mid + 1, en);
   
    //returning the addition of both vectors
    return add_two_result(v1, v2);
   
}
   
// A recursive function that update 
// frequency of new and old character
void update(int pos, int indx, int st,
                    int en, char pre, char cur) {
   
    // If segment of this node is
    // outside the given range
    if (indx > en || indx < st) return;
      
    // Subtract frequency of previous character
    seg_tree[pos][pre - 'a']--; 
   
    // Add frequency of new character
    seg_tree[pos][cur - 'a']++; 
   
    if (st != en)
    {
        int mid = st + en >> 1;
          
        // update left child
        update(2 * pos, indx, st,
                              mid, pre, cur); 
          
        // update right child
        update(2 * pos + 1, indx,
                       mid + 1, en, pre, cur); 
    }
   
}
   
// Utility function to 
// initialize seg_tree vector
void initialize()
{
    for (int i = 0; i < N; i++)
        seg_tree[i].resize(26, 0);
}
   
int count_frequency(string s, vector <int> v)
{
    int ans = 1;
    // multiplying frequency of all 
    // characters in string hard
    for (int i = 0; s[i]; i++)
        ans = (ans * v[s[i] - 'a']) % mod;
   
    return ans;
}
   
// Driver Code
int main()
{
    int n, q, ans;
    vector <int> v;
   
    n = 15;
    str = "haardhhardrddrd";
   
    //initialize and build the seg_tree vector
    initialize();
    build(1, 1, n);
    string s = "hard"
   
    // getting frequency of all 
    // characters from 1 to 5
    v = get(1, 1, 5, 1, n);
   
    // Calling count_frequency
    ans = count_frequency(s, v);
   
    cout << ans << '\n';
   
    // Updating character at index 3
    update(1, 3, 1, n, str[2], 'x');
    str[2] = 'x';
   
    // getting frequency of all 
    // characters from 1 to 5
    v = get(1, 1, 5, 1, n);
   
    //calling count_frequency
    ans = count_frequency(s, v);
   
    cout << ans << '\n';
   
    return 0;
   
}


Java




// Java implementation of the approach 
import java.util.*;
  
class GFG {
  
    final static int N = 400005;
    final static int mod = 1000000007;
  
    static int[][] seg_tree = new int[N][26];
    static StringBuilder str;
  
    // A recursive function that constructs
    // Segment Tree for given String
    static void build(int pos, int st, int en) {
  
        if (st == en) {
  
            // Increment the frequency of character
            // by one if st is equal to en
            seg_tree[pos][str.charAt(st - 1) - 'a']++;
            return;
        }
  
        int mid = st + en >> 1;
  
        // Build the segment tree for range st to mid
        build(2 * pos, st, mid);
  
        // Build the segment tree for range mid+1 to en
        build(2 * pos + 1, mid + 1, en);
  
        // It stores addition of frequency of
        // characters of both of its child after
        // segment tree is build
        for (int i = 0; i < 26; i++)
            seg_tree[pos][i] = seg_tree[2 * pos + 1][i] + seg_tree[2 * pos][i];
  
    }
  
    // A utility function for
    // addition of two vectors
    static int[] add_two_result(int[] v1, int[] v2) {
        int[] added_vec = new int[26];
  
        // Adding two vector and storing
        // it in another vector
        for (int i = 0; i < 26; i++)
            added_vec[i] = v1[i] + v2[i];
  
        // Returning final vector
        return added_vec;
  
    }
  
    // A recursive function that return vector
    // which contains frequency of every character
    static int[] get(int pos, int l, int r, int st, int en) {
  
        // If segment of this node is
        // outside the given range
        if (l > en || r < st) {
            int[] empty = new int[26];
            return empty;
        }
  
        // If segment of this node is a part
        // of given range, then return the
        // frequency every character of the segment
        if (st >= l && en <= r) {
            return seg_tree[pos];
        }
  
        // getting mid of st and en
        int mid = st + en >> 1;
  
        // storing answer of left child n v1
        int[] v1 = get(2 * pos, l, r, st, mid);
  
        // storing answer of left child n v1
        int[] v2 = get(2 * pos + 1, l, r, mid + 1, en);
  
        // returning the addition of both vectors
        return add_two_result(v1, v2);
    }
  
    // A recursive function that update
    // frequency of new and old character
    static void update(int pos, int indx, int st, int en, char pre, char cur) {
  
        // If segment of this node is
        // outside the given range
        if (indx > en || indx < st)
            return;
  
        // Subtract frequency of previous character
        seg_tree[pos][pre - 'a']--;
  
        // Add frequency of new character
        seg_tree[pos][cur - 'a']++;
  
        if (st != en) {
            int mid = st + en >> 1;
  
            // update left child
            update(2 * pos, indx, st, mid, pre, cur);
  
            // update right child
            update(2 * pos + 1, indx, mid + 1, en, pre, cur);
        }
    }
  
    static int count_frequency(String s, int[] v) {
        int ans = 1;
  
        // multiplying frequency of all
        // characters in String hard
        for (int i = 0; i < s.length(); i++)
            ans = (ans * v[s.charAt(i) - 'a']) % mod;
  
        return ans;
    }
  
    // Driver Code
    public static void main(String[] args) {
  
        int n, q, ans;
        int[] v;
  
        n = 15;
        str = new StringBuilder("haardhhardrddrd");
  
        build(1, 1, n);
        String s = "hard";
  
        // getting frequency of all
        // characters from 1 to 5
        v = get(1, 1, 5, 1, n);
  
        // Calling count_frequency
        ans = count_frequency(s, v);
  
        System.out.println(ans);
  
        // Updating character at index 3
        update(1, 3, 1, n, str.charAt(2), 'x');
        str.setCharAt(2, 'x');
  
        // getting frequency of all
        // characters from 1 to 5
        v = get(1, 1, 5, 1, n);
  
        // calling count_frequency
        ans = count_frequency(s, v);
  
        System.out.println(ans);
    }
}
  
// This code is contributed by
// sanjeev2552


Python3




# Python3 implementation of the approach
N = 400005
mod = 1000000007
  
seg_tree = [[0 for i in range(26)] for i in range(N)]
str = ""
  
# A recursive function that constructs
# Segment Tree for given
def build(pos, st, en):
  
    if (st == en):
  
        # Increment the frequency of character
        # by one if st is equal to en
        seg_tree[pos][ord(str[st - 1] )- ord('a')]+=1
        return
  
    mid = st + en >> 1
  
    # Build the segment tree for range st to mid
    build(2 * pos, st, mid)
  
    # Build the segment tree for range mid+1 to en
    build(2 * pos + 1, mid + 1, en)
  
    # It stores addition of frequency of
    # characters of both of its child after
    # segment tree is build
    for i in range(26):
        seg_tree[pos][i] = seg_tree[2 * pos + 1][i] + \
                            seg_tree[2 * pos][i]
  
# A utility function for
# addition of two vectors
def add_two_result(v1,v2):
  
    added_vec=[0]*(26)
  
    # Adding two vector and storing
    # it in another vector
    for i in range(26):
        added_vec[i] = v1[i] + v2[i]
  
    # Returning final vector
    return added_vec
  
# A recursive function that return vector
# which contains frequency of every character
def get(pos, l, r,st, en):
  
    # If segment of this node is
    # outside the given range
    if (l > en or r < st):
        empty = [0]*26
        return empty
  
    # If segment of this node is a part
    # of given range, then return the
    # frequency every character of the segment
    if (st >= l and en <= r):
  
        return seg_tree[pos]
  
    # getting mid of st and en
    mid = st + en >> 1
  
    # storing answer of left child n v1
    v1 = get(2 * pos, l,r, st, mid)
      
    # storing answer of left child n v1
    v2 = get(2 * pos + 1,l, r, mid + 1, en)
  
    # returning the addition of both vectors
    return add_two_result(v1, v2)
  
# A recursive function that update
# frequency of new and old character
def update(pos, indx, st,en,pre,cur):
  
    # If segment of this node is
    # outside the given range
    if (indx > en or indx < st):
        return
  
    # Subtract frequency of previous character
    seg_tree[pos][ord(pre) - ord('a')]-=1
  
    # Add frequency of new character
    seg_tree[pos][ord(cur) - ord('a')]+=1
  
    if (st != en):
  
        mid = st + en >> 1
  
        # update left child
        update(2 * pos,indx, st,mid, pre, cur)
  
        # update right child
        update(2 * pos + 1, indx,mid + 1, en, pre, cur)
  
def count_frequency(s,v):
  
    ans = 1
      
    # multiplying frequency of all
    # characters in hard
    i = 0
    while i < len(s):
        ans = (ans * v[ord(s[i]) - ord('a')]) % mod
        i += 1
  
    return ans
  
# Driver Code
if __name__ == '__main__':
    v=[]
  
    n = 15
    str = "haardhhardrddrd"
    str=[i for i in str]
  
    build(1, 1, n)
    s = "hard"
  
    # getting frequency of all
    # characters from 1 to 5
    v = get(1, 1, 5, 1, n)
  
    # Calling count_frequency
    ans = count_frequency(s, v)
  
    print(ans)
  
    # Updating character at index 3
    update(1, 3, 1, n, str[2], 'x')
    str[2] = 'x'
  
    # getting frequency of all
    # characters from 1 to 5
    v = get(1, 1, 5, 1, n)
  
    # calling count_frequency
    ans = count_frequency(s, v)
  
    print(ans)
  
# This code is contributed by mohit kumar 29


C#




// C# implementation of the approach 
using System;
using System.Text;
  
class GFG{
  
readonly static int N = 400005;
readonly static int mod = 1000000007;
  
static int[,] seg_tree = new int[N, 26];
static StringBuilder str;
  
// A recursive function that constructs
// Segment Tree for given String
static void build(int pos, int st, int en) 
{
    if (st == en) 
    {
          
        // Increment the frequency of character
        // by one if st is equal to en
        seg_tree[pos,str[st - 1] - 'a']++;
        return;
    }
  
    int mid = st + en >> 1;
  
    // Build the segment tree for range st to mid
    build(2 * pos, st, mid);
  
    // Build the segment tree for range mid+1 to en
    build(2 * pos + 1, mid + 1, en);
  
    // It stores addition of frequency of
    // characters of both of its child after
    // segment tree is build
    for(int i = 0; i < 26; i++)
        seg_tree[pos, i] = seg_tree[2 * pos + 1, i] + 
                           seg_tree[2 * pos, i];
}
  
// A utility function for
// addition of two vectors
static int[] add_two_result(int[] v1, int[] v2) 
{
    int[] added_vec = new int[26];
  
    // Adding two vector and storing
    // it in another vector
    for(int i = 0; i < 26; i++)
        added_vec[i] = v1[i] + v2[i];
  
    // Returning readonly vector
    return added_vec;
}
  
// A recursive function that return vector
// which contains frequency of every character
static int[] get(int pos, int l, int r, int st, int en)
{
      
    // If segment of this node is
    // outside the given range
    if (l > en || r < st)
    {
        int[] empty = new int[26];
        return empty;
    }
  
    // If segment of this node is a part
    // of given range, then return the
    // frequency every character of the segment
    if (st >= l && en <= r) 
    {
        return GetRow(seg_tree, pos); 
    }
  
    // Getting mid of st and en
    int mid = st + en >> 1;
  
    // Storing answer of left child n v1
    int[] v1 = get(2 * pos, l, r, st, mid);
  
    // Storing answer of left child n v1
    int[] v2 = get(2 * pos + 1, l, r, mid + 1, en);
  
    // Returning the addition of both vectors
    return add_two_result(v1, v2);
}
  
// A recursive function that update
// frequency of new and old character
static void update(int pos, int indx, int st, 
                   int en, char pre, char cur) 
{
      
    // If segment of this node is
    // outside the given range
    if (indx > en || indx < st)
        return;
  
    // Subtract frequency of previous character
    seg_tree[pos,pre - 'a']--;
  
    // Add frequency of new character
    seg_tree[pos,cur - 'a']++;
  
    if (st != en)
    {
        int mid = st + en >> 1;
  
        // update left child
        update(2 * pos, indx, st, mid, pre, cur);
  
        // update right child
        update(2 * pos + 1, indx, mid + 1,
               en, pre, cur);
    }
}
  
static int count_frequency(String s, int[] v) 
{
    int ans = 1;
  
    // Multiplying frequency of all
    // characters in String hard
    for(int i = 0; i < s.Length; i++)
        ans = (ans * v[s[i] - 'a']) % mod;
  
    return ans;
}
  
public static int[] GetRow(int[,] matrix, int row)
{
    var rowLength = matrix.GetLength(1);
    var rowVector = new int[rowLength];
      
    for(var i = 0; i < rowLength; i++)
        rowVector[i] = matrix[row, i];
      
    return rowVector;
}
  
// Driver Code
public static void Main(String[] args) 
{
      
    int n, ans;
    int[] v;
  
    n = 15;
    str = new StringBuilder("haardhhardrddrd");
  
    build(1, 1, n);
    String s = "hard";
  
    // Getting frequency of all
    // characters from 1 to 5
    v = get(1, 1, 5, 1, n);
  
    // Calling count_frequency
    ans = count_frequency(s, v);
  
    Console.WriteLine(ans);
  
    // Updating character at index 3
    update(1, 3, 1, n, str[2], 'x');
    str[2] = 'x';
  
    // Getting frequency of all
    // characters from 1 to 5
    v = get(1, 1, 5, 1, n);
  
    // Calling count_frequency
    ans = count_frequency(s, v);
  
    Console.WriteLine(ans);
}
}
  
// This code is contributed by shikhasingrajput


Javascript




<script>
  
// Javascript implementation of the approach 
var N = 400005;
var mod = 1000000007;
  
var seg_tree = Array.from(Array(N), ()=>Array(26).fill(0));
var str = "";
  
// A recursive function that constructs
// Segment Tree for given String
function build(pos, st, en) 
{
    if (st == en) 
    {
          
        // Increment the frequency of character
        // by one if st is equal to en
        seg_tree[pos][str[st - 1].charCodeAt(0) - 'a'.charCodeAt(0)]++;
        return;
    }
  
    var mid = st + en >> 1;
  
    // Build the segment tree for range st to mid
    build(2 * pos, st, mid);
  
    // Build the segment tree for range mid+1 to en
    build(2 * pos + 1, mid + 1, en);
  
    // It stores addition of frequency of
    // characters of both of its child after
    // segment tree is build
    for(var i = 0; i < 26; i++)
        seg_tree[pos][ i] = seg_tree[2 * pos + 1][ i] + 
                           seg_tree[2 * pos][ i];
}
  
// A utility function for
// addition of two vectors
function add_two_result(v1, v2) 
{
    var added_vec = Array(26).fill(0);
  
    // Adding two vector and storing
    // it in another vector
    for(var i = 0; i < 26; i++)
        added_vec[i] = v1[i] + v2[i];
  
    // Returning readonly vector
    return added_vec;
}
  
// A recursive function that return vector
// which contains frequency of every character
function get(pos, l, r, st, en)
{
      
    // If segment of this node is
    // outside the given range
    if (l > en || r < st)
    {
        var empty = Array(26).fill(0);
        return empty;
    }
  
    // If segment of this node is a part
    // of given range, then return the
    // frequency every character of the segment
    if (st >= l && en <= r) 
    {
        return GetRow(seg_tree, pos); 
    }
  
    // Getting mid of st and en
    var mid = st + en >> 1;
  
    // Storing answer of left child n v1
    var v1 = get(2 * pos, l, r, st, mid);
  
    // Storing answer of left child n v1
    var v2 = get(2 * pos + 1, l, r, mid + 1, en);
  
    // Returning the addition of both vectors
    return add_two_result(v1, v2);
}
  
// A recursive function that update
// frequency of new and old character
function update(pos, indx, st, en, pre, cur) 
{
      
    // If segment of this node is
    // outside the given range
    if (indx > en || indx < st)
        return;
  
    // Subtract frequency of previous character
    seg_tree[pos][pre.charCodeAt(0) - 'a'.charCodeAt(0)]--;
  
    // Add frequency of new character
    seg_tree[pos][cur.charCodeAt(0) - 'a'.charCodeAt(0)]++;
  
    if (st != en)
    {
        var mid = st + en >> 1;
  
        // update left child
        update(2 * pos, indx, st, mid, pre, cur);
  
        // update right child
        update(2 * pos + 1, indx, mid + 1,
               en, pre, cur);
    }
}
  
function count_frequency(s, v) 
{
    var ans = 1;
  
    // Multiplying frequency of all
    // characters in String hard
    for(var i = 0; i < s.length; i++)
        ans = (ans * v[s[i].charCodeAt(0) - 'a'.charCodeAt(0)]) % mod;
  
    return ans;
}
  
function GetRow(matrix, row)
{
    var rowLength = matrix[0].length;
    var rowVector = Array(rowLength).fill(0);
      
    for(var i = 0; i < rowLength; i++)
        rowVector[i] = matrix[row][i];
      
    return rowVector;
}
  
// Driver Code
var n, ans;
var v = [];
n = 15;
str = "haardhhardrddrd".split('');
build(1, 1, n);
var s = "hard";
  
// Getting frequency of all
// characters from 1 to 5
v = get(1, 1, 5, 1, n);
  
// Calling count_frequency
ans = count_frequency(s, v);
document.write(ans+"<br>");
  
// Updating character at index 3
update(1, 3, 1, n, str[2], 'x');
str[2] = 'x';
  
// Getting frequency of all
// characters from 1 to 5
v = get(1, 1, 5, 1, n);
  
// Calling count_frequency
ans = count_frequency(s, v);
document.write(ans);
  
// This code is contributed by rrrtnx.
</script>


Output

2
1

Time complexity : 0(m*log(n)+n*log(n))
Auxiliary Space: O(n) 
 
 

Related Topic: Segment Tree

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments