Friday, December 27, 2024
Google search engine
HomeData Modelling & AIString manipulation and Kth lexicographically largest character query

String manipulation and Kth lexicographically largest character query

Given a string s whose length is n and array queries of length q where each element of queries is either of type 1 query or type 2 query, the task is to perform each query in the same order as given in queries and return an array res such that the res array contains the answer for each type2 query in the same order as it appeared in queries that are explained below:

  • Query type 1: [“1”, ind, char], “1” denotes this is a type 1 query. In this query, you have to change the character at index ind in s to character char. (Data type of ind, char is a string in input)
  • Query type 2: [“2”, left, right, k], “2” denotes this is a type 2 query. In this query you have to return the kth lexicographically largest character in the substring of s (it is the kth largest character in sorted order, not the kth distinct character) starting from index left and ending at index right both left and right are inclusive. (Data type of left, right, k is a string in input)

Note: 0-based indexing is used.

Examples:

Input: n = 4, s = “abab”, q = 2, queries = {{“1”, “2”, “d”}, {“2”, “1”, “3”, “1”}}
Output: {“d”}
Explanation: The first query is of type 1 so after changing the character at index 2  to d  s becomes abdb. Now the Second query is of type 2 in which the 1st(k = 1) lexicographically largest character is “d” in substring “bdb”(s[1:3]). So we returned an array with the result of type 2 query {“d”}.

Input: n = 3, s = “aaa”, q = 3, queries = {{“1”, “1”, “e”}, {“1”, “2”, “c”}, {“2”, “1”, “2”, “2”}}
Output: {“c”}
Explanation: After applying the first two queries s becomes aec. Now for the last query which is a type 2 second largest character in substring s starting from index 1 to ending at index 2 is “c”.

Approach: This can be solved with the following idea:

The approach uses a segment tree to efficiently perform these queries. The segment tree is built using the given string of characters, where each node of the segment tree stores the frequency count of each character in the range represented by that node. For the update query, it updates the frequency count of the corresponding character in the segment tree, while for the kth smallest character query, it performs a binary search on the segment tree to find the kth smallest character in the given range. Finally, the code returns an ArrayList of the kth smallest character for each query of type 2.

Below are the steps involved in the implementation of the code:

  • Update a character at a given index in the string.
  • Find the kth largest character in a given range of the string.
  • For query type 1, the code updates the segment tree by decrementing the count of the original character and incrementing the count of the new character. 
  • For query type 2, the code traverses the segment tree to get the count of each character in the given range and then iterates through the count array in reverse order to find the kth largest character. 
  • The code returns a list of the answers to all the queries.

Below is the code implementation of the above approach:

C++




#include <iostream>
#include <vector>
 
using namespace std;
 
vector<vector<int>> seg;
 
// Query Structure
struct Query {
    string type, a, b, c;
 
    Query(string t, string aa, string bb, string cc) : type(t), a(aa), b(bb), c(cc) {}
 
    Query(string t, string aa, string bb) : type(t), a(aa), b(bb), c("") {}
};
 
// Function to build tree
void buildTree(const vector<char>& a, int si, int ss, int se) {
    if (ss == se) {
        seg[si][a[ss] - 'a']++;
        return;
    }
    int mid = (ss + se) / 2;
    buildTree(a, 2 * si + 1, ss, mid);
    buildTree(a, 2 * si + 2, mid + 1, se);
    auto& a1 = seg[2 * si + 1];
    auto& a2 = seg[2 * si + 2];
    for (int i = 0; i < 26; i++) {
        seg[si][i] = a1[i] + a2[i];
    }
}
 
// Update the particular string
void update(int si, int ss, int se, int pos, char val) {
    if (ss == se) {
        int in = 0;
        for (int i = 0; i < 26; i++) {
            if (seg[si][i] >= 1) {
                in = i;
                break;
            }
        }
        seg[si][in]--;
        seg[si][val - 'a']++;
        return;
    }
    int mid = (ss + se) / 2;
    if (pos <= mid) {
        update(2 * si + 1, ss, mid, pos, val);
    } else {
        update(2 * si + 2, mid + 1, se, pos, val);
    }
    auto& a1 = seg[2 * si + 1];
    auto& a2 = seg[2 * si + 2];
    for (int i = 0; i < 26; i++) {
        seg[si][i] = a1[i] + a2[i];
    }
}
 
// Function to start
vector<int> query(int si, int ss, int se, int qs, int qe) {
    if (qs > se || qe < ss)
        return vector<int>(26, 0);
    if (ss >= qs && se <= qe)
        return seg[si];
    int mid = (ss + se) / 2;
    auto a1 = query(2 * si + 1, ss, mid, qs, qe);
    auto a2 = query(2 * si + 2, mid + 1, se, qs, qe);
    vector<int> ans(26, 0);
    for (int i = 0; i < 26; i++) {
        ans[i] = a1[i] + a2[i];
    }
    return ans;
}
 
// Function to get the desired output
vector<char> easyTask(int n, const string& s, int q, const vector<Query>& queries) {
    seg.resize(4 * n, vector<int>(26, 0));
    vector<char> ans;
 
    for (int i = 0; i < q; i++) {
        if (queries[i].type == "1") {
            int ind = stoi(queries[i].a);
            char val = queries[i].b[0];
            update(0, 0, n - 1, ind, val);
        } else {
            int l = stoi(queries[i].a);
            int r = stoi(queries[i].b);
            int k = stoi(queries[i].c);
            auto arr = query(0, 0, n - 1, l, r);
            for (int j = 25; j >= 0; j--) {
                for (int kk = 0; kk < arr[j]; kk++) {
                    k--;
                    if (k == 0) {
                        ans.push_back(static_cast<char>(j + 'a'));
                    }
                }
            }
        }
    }
    return ans;
}
 
// Driver code
int main() {
    int n = 4;
    string s = "abab";
    int q = 2;
    vector<Query> queries;
    queries.emplace_back("1", "2", "d");
    queries.emplace_back("2", "1", "3", "1");
 
    // Function call
    vector<char> result = easyTask(n, s, q, queries);
 
    // Print the result
    for (char c : result) {
        cout << c << " ";
    }
    return 0;
}


Java




// Java Implementation
import java.util.*;
 
class Solution {
    static int seg[][];
 
    // Function the get the desired output
    public static ArrayList<Character>
    easyTask(int n, String s, int q, query queries[])
    {
        seg = new int[4 * n][26];
        char c[] = s.toCharArray();
 
        // Function to build tree
        buildTree(c, 0, 0, n - 1);
 
        ArrayList<Character> ans = new ArrayList<>();
 
        for (int i = 0; i < q; i++) {
 
            if (queries[i].type.equals("1")) {
 
                int ind = Integer.parseInt(queries[i].a);
                char val = queries[i].b.charAt(0);
                update(0, 0, n - 1, ind, val);
            }
            else {
 
                int l = Integer.parseInt(queries[i].a);
                int r = Integer.parseInt(queries[i].b);
                int k = Integer.parseInt(queries[i].c);
                int arr[] = query(0, 0, n - 1, l, r);
                for (int j = 25; j >= 0; j--) {
 
                    for (int kk = 0; kk < arr[j]; kk++) {
 
                        k--;
                        if (k == 0) {
                            ans.add((char)(j + 'a'));
                        }
                    }
                }
            }
        }
        return ans;
    }
 
    // Function to build tree
    public static void buildTree(char a[], int si, int ss,
                                 int se)
    {
        if (ss == se) {
            seg[si][a[ss] - 'a']++;
            return;
        }
        int mid = (ss + se) / 2;
        buildTree(a, 2 * si + 1, ss, mid);
        buildTree(a, 2 * si + 2, mid + 1, se);
        int a1[] = seg[2 * si + 1];
        int a2[] = seg[2 * si + 2];
        for (int i = 0; i < 26; i++) {
            seg[si][i] = a1[i] + a2[i];
        }
    }
 
    // Update the particular string
    public static void update(int si, int ss, int se,
                              int pos, char val)
    {
        if (ss == se) {
            int in = 0;
            for (int i = 0; i < 26; i++) {
                if (seg[si][i] >= 1) {
                    in = i;
                    break;
                }
            }
            seg[si][in]--;
            seg[si][val - 'a']++;
            return;
        }
        int mid = (ss + se) / 2;
        if (pos <= mid) {
            update(2 * si + 1, ss, mid, pos, val);
        }
        else {
            update(2 * si + 2, mid + 1, se, pos, val);
        }
        int a1[] = seg[2 * si + 1];
        int a2[] = seg[2 * si + 2];
        for (int i = 0; i < 26; i++) {
            seg[si][i] = a1[i] + a2[i];
        }
    }
 
    // Function to start
    public static int[] query(int si, int ss, int se,
                              int qs, int qe)
    {
        if (qs > se || qe < ss)
            return new int[26];
        if (ss >= qs && se <= qe)
            return seg[si];
        int mid = (ss + se) / 2;
        int a1[] = query(2 * si + 1, ss, mid, qs, qe);
        int a2[] = query(2 * si + 2, mid + 1, se, qs, qe);
        // return max(p1, p2);
        int ans[] = new int[26];
        for (int i = 0; i < 26; i++) {
            ans[i] = a1[i] + a2[i];
        }
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 4;
        String s = "abab";
        int q = 2;
        query[] queries = new query[2];
        queries[0] = new query("1", "2", "d");
        queries[1] = new query("2", "1", "3", "1");
 
        // Function call
        ArrayList<Character> result
            = Solution.easyTask(n, s, q, queries);
        System.out.println(result);
    }
}
 
// Query Structure
class query {
    String type;
    String a;
    String b;
    String c;
 
    public query(String type, String a, String b, String c)
    {
        this.type = type;
        this.a = a;
        this.b = b;
        this.c = c;
    }
 
    public query(String type, String a, String b)
    {
        this(type, a, b, null);
    }
}


Python




class Solution:
    seg = []  # Static variable to store the segment tree
 
    # Function to get the desired output
    @staticmethod
    def easyTask(n, s, q, queries):
        # Initialize the segment tree
        Solution.seg = [[0] * 26 for _ in range(4 * n)]
        c = list(s)  # Convert the string 's' to a list of characters
 
        # Function to build the segment tree
        Solution.buildTree(c, 0, 0, n - 1)
 
        ans = []  # List to store the answers to the queries
 
        for query in queries:
            if query['type'] == '1'# Type 1: Update the string
                ind = int(query['a'])  # Get the index to update
                val = query['b'][0# Get the new character value
                # Update the segment tree
                Solution.update(0, 0, n - 1, ind, val)
            else# Type 2: Query for character at k-th position
                l = int(query['a'])  # Get the left index of the query range
                r = int(query['b'])  # Get the right index of the query range
                k = int(query['c'])  # Get the k-th position
 
                # Perform the query on the segment tree
                arr = Solution.query(0, 0, n - 1, l, r)
 
                # Traverse the array from highest to lowest character position
                for j in range(25, -1, -1):
                    for kk in range(arr[j]):
                        k -= 1
                        if k == 0:
                            # Found the k-th character, add to answer
                            ans.append(chr(j + ord('a')))
 
        return ans
 
    # Function to build the segment tree
    @staticmethod
    def buildTree(a, si, ss, se):
        if ss == se:
            # Increment the character count
            Solution.seg[si][ord(a[ss]) - ord('a')] += 1
            return
        mid = (ss + se) // 2
        Solution.buildTree(a, 2 * si + 1, ss, mid)  # Build left child
        Solution.buildTree(a, 2 * si + 2, mid + 1, se)  # Build right child
        for i in range(26):
            Solution.seg[si][i] = Solution.seg[2 * si + 1][i] + \
                Solution.seg[2 * si + 2][i]  # Update count
 
    # Update the particular string
    @staticmethod
    def update(si, ss, se, pos, val):
        if ss == se:
            in_ = 0
            for i in range(26):
                if Solution.seg[si][i] >= 1:
                    in_ = i
                    break
            Solution.seg[si][in_] -= 1  # Decrement the old character count
            # Increment the new character count
            Solution.seg[si][ord(val) - ord('a')] += 1
            return
        mid = (ss + se) // 2
        if pos <= mid:
            Solution.update(2 * si + 1, ss, mid, pos, val)  # Update left child
        else:
            Solution.update(2 * si + 2, mid + 1, se, pos,
                            val)  # Update right child
        for i in range(26):
            Solution.seg[si][i] = Solution.seg[2 * si + 1][i] + \
                Solution.seg[2 * si + 2][i]  # Update count
 
    # Function to perform the query
    @staticmethod
    def query(si, ss, se, qs, qe):
        if qs > se or qe < ss:
            return [0] * 26  # No overlap, return array of 26 zeros
        if ss >= qs and se <= qe:
            # Completely overlap, return the array from segment tree
            return Solution.seg[si]
        mid = (ss + se) // 2
        a1 = Solution.query(2 * si + 1, ss, mid, qs, qe)  # Query left child
        a2 = Solution.query(2 * si + 2, mid + 1, se,
                            qs, qe)  # Query right child
        ans = [0] * 26
        for i in range(26):
            # Merge the results from left and right children
            ans[i] = a1[i] + a2[i]
        return ans
 
    # Driver code
    @staticmethod
    def main():
        n = 4  # Length of the string
        s = "abab"  # Input string
        q = 2  # Number of queries
        queries = [
            # Update query at index 2 with character 'd'
            {'type': '1', 'a': '2', 'b': 'd'},
            # Query for the first character in the range [1, 3]
            {'type': '2', 'a': '1', 'b': '3', 'c': '1'}
        ]
 
        # Function call
        result = Solution.easyTask(n, s, q, queries)
        print(result)
 
 
# Query Structure
class Query:
    def __init__(self, type_, a, b, c=None):
        self.type = type_
        self.a = a
        self.b = b
        self.c = c
 
 
# Run the code
Solution.main()


C#




using System;
using System.Collections.Generic;
 
public class Solution {
    // Static variable to store the segment tree
    private static int[, ] seg;
 
    // Function to get the desired output
    public static List<char>
    EasyTask(int n, string s, int q,
             List<Dictionary<string, string> > queries)
    {
        // Initialize the segment tree
        seg = new int[4 * n, 26];
        char[] c
            = s.ToCharArray(); // Convert the string 's' to
                               // a list of characters
 
        // Function to build the segment tree
        BuildTree(c, 0, 0, n - 1);
 
        List<char> ans
            = new List<char>(); // List to store the answers
                                // to the queries
 
        foreach(var query in queries)
        {
            if (query["type"]
                == "1") // Type 1: Update the string
            {
                int ind = int.Parse(
                    query["a"]); // Get the index to update
                char val = query["b"][0]; // Get the new
                                          // character value
                // Update the segment tree
                Update(0, 0, n - 1, ind, val);
            }
            else // Type 2: Query for the character at k-th
                 // position
            {
                int l = int.Parse(
                    query["a"]); // Get the left index of
                                 // the query range
                int r = int.Parse(
                    query["b"]); // Get the right index of
                                 // the query range
                int k = int.Parse(
                    query["c"]); // Get the k-th position
 
                // Perform the query on the segment tree
                int[] arr = Query(0, 0, n - 1, l, r);
 
                // Traverse the array from highest to lowest
                // character position
                for (int j = 25; j >= 0; j--) {
                    for (int kk = 0; kk < arr[j]; kk++) {
                        k--;
                        if (k == 0) {
                            // Found the k-th character, add
                            // to the answer
                            ans.Add((char)(j + 'a'));
                        }
                    }
                }
            }
        }
 
        return ans;
    }
 
    // Function to build the segment tree
    private static void BuildTree(char[] a, int si, int ss,
                                  int se)
    {
        if (ss == se) {
            // Increment the character count
            seg[si, a[ss] - 'a'] += 1;
            return;
        }
 
        int mid = (ss + se) / 2;
        // Build left child
        BuildTree(a, 2 * si + 1, ss, mid);
        // Build right child
        BuildTree(a, 2 * si + 2, mid + 1, se);
 
        for (int i = 0; i < 26; i++) {
            // Update count
            seg[si, i]
                = seg[2 * si + 1, i] + seg[2 * si + 2, i];
        }
    }
 
    // Update the particular string
    private static void Update(int si, int ss, int se,
                               int pos, char val)
    {
        if (ss == se) {
            int inIdx = 0;
            for (int i = 0; i < 26; i++) {
                if (seg[si, i] >= 1) {
                    inIdx = i;
                    break;
                }
            }
 
            // Decrement the old character count
            seg[si, inIdx]--;
 
            // Increment the new character count
            seg[si, val - 'a']++;
            return;
        }
 
        int mid = (ss + se) / 2;
        if (pos <= mid) {
            // Update left child
            Update(2 * si + 1, ss, mid, pos, val);
        }
        else {
            // Update right child
            Update(2 * si + 2, mid + 1, se, pos, val);
        }
 
        for (int i = 0; i < 26; i++) {
            // Update count
            seg[si, i]
                = seg[2 * si + 1, i] + seg[2 * si + 2, i];
        }
    }
 
    // Function to perform the query
    private static int[] Query(int si, int ss, int se,
                               int qs, int qe)
    {
        if (qs > se || qe < ss) {
            // No overlap, return an array of 26 zeros
            return new int[26];
        }
 
        if (ss >= qs && se <= qe) {
            // Completely overlap, return the array from the
            // segment tree
            return GetRow(seg, si);
        }
 
        int mid = (ss + se) / 2;
        // Query left child
        int[] a1 = Query(2 * si + 1, ss, mid, qs, qe);
        // Query right child
        int[] a2 = Query(2 * si + 2, mid + 1, se, qs, qe);
 
        int[] ans = new int[26];
        for (int i = 0; i < 26; i++) {
            // Merge the results from left and right
            // children
            ans[i] = a1[i] + a2[i];
        }
 
        return ans;
    }
 
    // Helper function to get a row from a 2D array
    private static int[] GetRow(int[, ] array, int row)
    {
        int columns = array.GetLength(1);
        int[] rowArray = new int[columns];
        for (int i = 0; i < columns; i++) {
            rowArray[i] = array[row, i];
        }
        return rowArray;
    }
 
    // Driver code
    public static void Main()
    {
        int n = 4; // Length of the string
        string s = "abab"; // Input string
        int q = 2; // Number of queries
 
        List<Dictionary<string, string> > queries
            = new List<Dictionary<string, string> >{
                  // Update query at index 2 with character
                  // 'd'
                  new Dictionary<string, string>{
                      { "type", "1" },
                      { "a", "2" },
                      { "b", "d" } },
                  // Query for the first character in the
                  // range [1, 3]
                  new Dictionary<string, string>{
                      { "type", "2" },
                      { "a", "1" },
                      { "b", "3" },
                      { "c", "1" } }
              };
 
        // Function call
        List<char> result = EasyTask(n, s, q, queries);
        Console.WriteLine(string.Join(" ", result));
    }
}


Javascript




class Solution {
  static seg = [];
   
   // Function the get the desired output
  static easyTask(n, s, q, queries) {
    Solution.seg = Array.from({ length: 4 * n }, () => Array(26).fill(0));
    const c = Array.from(s);
     
    // Function to build tree
    Solution.buildTree(c, 0, 0, n - 1);
    const ans = [];
    for (const query of queries) {
      if (query.type === '1') {
        const ind = parseInt(query.a);
        const val = query.b[0];
        Solution.update(0, 0, n - 1, ind, val);
      } else {
        const l = parseInt(query.a);
        const r = parseInt(query.b);
        var k = parseInt(query.c);
        const arr = Solution.query(0, 0, n - 1, l, r);
        for (let j = 25; j >= 0; j--) {
          for (let kk = 0; kk < arr[j]; kk++) {
            k = k - 1;
            if (k === 0) {
              ans.push(String.fromCharCode(j + 'a'.charCodeAt(0)));
            }
          }
        }
      }
    }
    return ans;
  }
   
  // Function to build tree    
  static buildTree(a, si, ss, se) {
    if (ss === se) {
      Solution.seg[si][a[ss].charCodeAt(0) - 'a'.charCodeAt(0)] += 1;
      return;
    }
    const mid = Math.floor((ss + se) / 2);
    Solution.buildTree(a, 2 * si + 1, ss, mid);
    Solution.buildTree(a, 2 * si + 2, mid + 1, se);
    for (let i = 0; i < 26; i++) {
      Solution.seg[si][i] = Solution.seg[2 * si + 1][i] + Solution.seg[2 * si + 2][i];
    }
  }
   
  // Update the particular string
  static update(si, ss, se, pos, val) {
    if (ss === se) {
      let in_ = 0;
      for (let i = 0; i < 26; i++) {
        if (Solution.seg[si][i] >= 1) {
          in_ = i;
          break;
        }
      }
      Solution.seg[si][in_] -= 1;
      Solution.seg[si][val.charCodeAt(0) - 'a'.charCodeAt(0)] += 1;
      return;
    }
    const mid = Math.floor((ss + se) / 2);
    if (pos <= mid) {
      Solution.update(2 * si + 1, ss, mid, pos, val);
    } else {
      Solution.update(2 * si + 2, mid + 1, se, pos, val);
    }
    for (let i = 0; i < 26; i++) {
      Solution.seg[si][i] = Solution.seg[2 * si + 1][i] + Solution.seg[2 * si + 2][i];
    }
  }
   
  // Function to start
    static query(si, ss, se, qs, qe) {
        if (qs > se || qe < ss) {
            return Array(26).fill(0);
        }
        if (ss >= qs && se <= qe) {
            return Solution.seg[si];
        }
        let mid = Math.floor((ss + se) / 2);
        let a1 = Solution.query(2 * si + 1, ss, mid, qs, qe);
        let a2 = Solution.query(2 * si + 2, mid + 1, se, qs, qe);
        let ans = Array(26).fill(0);
        for (let i = 0; i < 26; i++) {
            ans[i] = a1[i] + a2[i];
        }
        return ans;
    }
     
    // Driver code
    static main() {
        let n = 4;
        let s = "abab";
        let q = 2;
        let queries = [
            { 'type': '1', 'a': '2', 'b': 'd' },
            { 'type': '2', 'a': '1', 'b': '3', 'c': '1' }
        ];
         
        // Function call
        let result = Solution.easyTask(n, s, q, queries);
        console.log(result);
    }
}
 
// Query Structure
class Query {
    constructor(type_, a, b, c = null) {
        this.type = type_;
        this.a = a;
        this.b = b;
        this.c = c;
    }
}
Solution.main();


Output

[d]







Time Complexity: O(N+(Q*logN))
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
28 Dec, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments