Given an array arr[] consisting of N integers, the task is to split the array into subarrays such that the sum of the difference between the maximum and minimum elements for all the subarrays is maximum.
Examples :
Input: arr[] = {8, 1, 7, 9, 2}
Output: 14
Explanation:
Consider splitting the given array into subarrays as {8, 1} and {7, 9, 2}. Now, the difference between maximum and minimum elements are:
- {8, 1}: Difference is (8 – 1) = 7.
- {7, 9, 2}: Difference is (9 – 2) = 7.
Therefore, the sum of the difference is 7 + 7 = 14.
Input: arr[] = {1, 2, 1, 0, 5}
Output: 6
Approach: The given problem can be solved by using Dynamic Programming. Follow the steps to solve the problem:
- Initialize an array, say dp[], where dp[i] represents the maximum sum of the difference between the maximum and minimum element for all the subarray for the first i array element.
- Initialize dp[0] as 0.
- Traverse the given array over the range [1, N – 1] and perform the following steps:
- Initialize a variable, say min as arr[i], that stores the minimum element over the range [0, i].
- Initialize a variable, say max as arr[i], that stores the maximum element over the range [0, i].
- Iterate over the range [0, i] using the variable j in the reverse order and perform the following steps:
- Update the value of min as the minimum of min and arr[j].
- Update the value of max as the minimum of max and arr[j].
- Update the value of dp[j] to the maximum of dp[j] and (max – min + dp[i]).
- After completing the above steps, print the value of dp[N – 1] as the result.
Below is the implementation of the above approach :
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find maximum sum of // difference between maximums and // minimums in the splitted subarrays int getValue( int arr[], int N) { int dp[N]; memset (dp, 0, sizeof (dp)); // Base Case dp[0] = 0; // Traverse the array for ( int i = 1; i < N; i++) { // Stores the maximum and // minimum elements upto // the i-th index int minn = arr[i]; int maxx = arr[i]; // Traverse the range [0, i] for ( int j = i; j >= 0; j--) { // Update the minimum minn = min(arr[j], minn); // Update the maximum maxx = max(arr[j], maxx); // Update dp[i] dp[i] = max(dp[i], maxx - minn + ((j >= 1) ? dp[j - 1] : 0)); } } // Return the maximum // sum of difference return dp[N - 1]; } // Driver code int main() { int arr[] = { 8, 1, 7, 9, 2 }; int N = sizeof (arr) / sizeof (arr[0]); cout << getValue(arr, N); return 0; } // This code is contributed by Kingash |
Java
// Java program for the above approach import java.util.*; public class Main { // Function to find maximum sum of // difference between maximums and // minimums in the splitted subarrays static int getValue( int [] arr, int N) { int dp[] = new int [N]; // Base Case dp[ 0 ] = 0 ; // Traverse the array for ( int i = 1 ; i < N; i++) { // Stores the maximum and // minimum elements upto // the i-th index int min = arr[i]; int max = arr[i]; // Traverse the range [0, i] for ( int j = i; j >= 0 ; j--) { // Update the minimum min = Math.min(arr[j], min); // Update the maximum max = Math.max(arr[j], max); // Update dp[i] dp[i] = Math.max( dp[i], max - min + ((j >= 1 ) ? dp[j - 1 ] : 0 )); } } // Return the maximum // sum of difference return dp[N - 1 ]; } // Driver Code public static void main(String args[]) { int arr[] = { 8 , 1 , 7 , 9 , 2 }; int N = arr.length; System.out.println(getValue(arr, N)); } } |
C#
// C# program for the above approach using System; class GFG{ // Function to find maximum sum of // difference between maximums and // minimums in the splitted subarrays static int getValue( int [] arr, int N) { int [] dp = new int [N]; // Base Case dp[0] = 0; // Traverse the array for ( int i = 1; i < N; i++) { // Stores the maximum and // minimum elements upto // the i-th index int min = arr[i]; int max = arr[i]; // Traverse the range [0, i] for ( int j = i; j >= 0; j--) { // Update the minimum min = Math.Min(arr[j], min); // Update the maximum max = Math.Max(arr[j], max); // Update dp[i] dp[i] = Math.Max( dp[i], max - min + ((j >= 1) ? dp[j - 1] : 0)); } } // Return the maximum // sum of difference return dp[N - 1]; } // Driver Code static public void Main() { int [] arr = { 8, 1, 7, 9, 2 }; int N = arr.Length; Console.Write(getValue(arr, N)); } } // This code is contributed by code_hunt |
Python3
# python 3 program for the above approach # Function to find maximum sum of # difference between maximums and # minimums in the splitted subarrays def getValue(arr, N): dp = [ 0 for i in range (N)] # Traverse the array for i in range ( 1 , N): # Stores the maximum and # minimum elements upto # the i-th index minn = arr[i] maxx = arr[i] j = i # Traverse the range [0, i] while (j > = 0 ): # Update the minimum minn = min (arr[j], minn) # Update the maximum maxx = max (arr[j], maxx) # Update dp[i] dp[i] = max (dp[i], maxx - minn + (dp[j - 1 ] if (j > = 1 ) else 0 )) j - = 1 # Return the maximum # sum of difference return dp[N - 1 ] # Driver code if __name__ = = '__main__' : arr = [ 8 , 1 , 7 , 9 , 2 ] N = len (arr) print (getValue(arr, N)) # This code is contributed by SURENDRA_GANGWAR. |
Javascript
<script> // JavaScript program to implement // the above approach // Function to find maximum sum of // difference between maximums and // minimums in the splitted subarrays function getValue(arr, N) { let dp = Array.from({length: N}, (_, i) => 0); // Base Case dp[0] = 0; // Traverse the array for (let i = 1; i < N; i++) { // Stores the maximum and // minimum elements upto // the i-th index let min = arr[i]; let max = arr[i]; // Traverse the range [0, i] for (let j = i; j >= 0; j--) { // Update the minimum min = Math.min(arr[j], min); // Update the maximum max = Math.max(arr[j], max); // Update dp[i] dp[i] = Math.max( dp[i], max - min + ((j >= 1) ? dp[j - 1] : 0)); } } // Return the maximum // sum of difference return dp[N - 1]; } // Driver code let arr = [ 8, 1, 7, 9, 2 ]; let N = arr.length; document.write(getValue(arr, N)); </script> |
14
Time Complexity: O(N2)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!