Thursday, December 26, 2024
Google search engine
HomeData Modelling & AISplit an array containing N elements into K sets of distinct elements

Split an array containing N elements into K sets of distinct elements

Given two integers N and K and an array arr[] consisting of duplicate elements, the task is to split N elements into K sets of distinct elements.
Examples: 
 

Input: N = 5, K = 2, arr[] = {3, 2, 1, 2, 3} 
Output: 
( 3 2 1 ) 
( 2 3 )
Input: N = 5, K = 2, arr[] = {2, 1, 1, 2, 1} 
Output: -1 
Explanation: 
It is not possible to split all the elements into K sets of distinct elements as 1 appears more than K times in the array. 
 

 

Approach: In order to solve the problem, we are using a map to store the frequency of every element. If the frequency of any element exceeds K, print -1. Maintain another map to store the sets for every respective frequencies. If no element has a frequency greater than K, print the sets for all corresponding frequencies as the required set.
Below is the implementation of the above approach: 
 

C++




// C++ Program to split N elements
// into exactly K sets consisting
// of no distinct elements
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if possible to
// split N elements into exactly K
// sets consisting of no distinct elements
void splitSets(int a[], int n, int k)
{
    // Store the frequency
    // of each element
    map<int, int> freq;
 
    // Store the required sets
    map<int, vector<int> > ans;
 
    for (int i = 0; i < n; i++) {
        // If frequency of a
        // particular element
        // exceeds K
        if (freq[a[i]] + 1 > k) {
            // Not possible
            cout << -1 << endl;
            return;
        }
 
        // Increase the frequency
        freq[a[i]] += 1;
        // Store the element for the
        // respective set
        ans[freq[a[i]]].push_back(a[i]);
    }
 
    // Display the sets
    for (auto it : ans) {
        cout << "( ";
        for (int i : it.second) {
            cout << i << " ";
        }
        cout << ")\n";
    }
}
 
// Driver code
int main()
{
 
    int arr[] = { 2, 1, 2, 3, 1,
                  4, 1, 3, 1, 4 };
    int n = sizeof(arr) / sizeof(int);
 
    int k = 4;
 
    splitSets(arr, n, k);
 
    return 0;
}


Java




// Java program to split N elements
// into exactly K sets consisting
// of no distinct elements
import java.util.*;
 
class GFG{
     
// Function to check if possible to
// split N elements into exactly K
// sets consisting of no distinct elements
static void splitSets(int a[], int n, int k)
{
     
    // Store the frequency
    // of each element
    Map<Integer, Integer> freq = new HashMap<>();
 
    // Store the required sets
    Map<Integer,
        ArrayList<Integer>> ans = new HashMap<>();
 
    for(int i = 0; i < n; i++)
    {
         
        // If frequency of a
        // particular element
        // exceeds K
        if(freq.get(a[i]) != null)
        {
            if (freq.get(a[i]) + 1 > k)
            {
                 
                // Not possible
                System.out.println(-1);
                return;
            }
        }
         
        // Increase the frequency
        freq.put(a[i], freq.getOrDefault(a[i], 0) + 1 );
         
        // Store the element for the
        // respective set
        if( ans.get(freq.get(a[i])) == null)
            ans.put(freq.get(a[i]),
                    new ArrayList<Integer>());
         
        ans.get(freq.get(a[i])).add(a[i]);
    }
     
    // Display the sets
    for(ArrayList<Integer> it : ans.values())
    {
        System.out.print("( ");
        for(int i = 0; i < it.size() - 1; i++)
        {
            System.out.print(it.get(i) + " ");
        }
         
        System.out.print(it.get(it.size() - 1));
        System.out.println(" )");
    }
}
 
// Driver code   
public static void main (String[] args)
{
    int arr[] = { 2, 1, 2, 3, 1,
                  4, 1, 3, 1, 4 };
                 
    int n = arr.length;
    int k = 4;
     
    splitSets(arr, n, k);
}
}
 
// This code is contributed by coder001


Python3




# Python3 Program to split N elements
# into exactly K sets consisting
# of no distinct elements
 
# Function to check if possible to
# split N elements into exactly K
# sets consisting of no distinct elements
def splitSets(a, n, k) :
 
    # Store the frequency
    # of each element
    freq = {}
 
    # Store the required sets
    ans = {}
 
    for i in range(n) :
       
        # If frequency of a
        # particular element
        # exceeds K
        if a[i] in freq :
            if freq[a[i]] + 1 > k :
               
                # Not possible
                print(-1)
                return
 
        # Increase the frequency
        if a[i] in freq :
            freq[a[i]] += 1
        else :
            freq[a[i]] = 1
     
        # Store the element for the
        # respective set
        if freq[a[i]] in ans :
            ans[freq[a[i]]].append(a[i])
        else :
            ans[freq[a[i]]] = [a[i]]
      
    # Display the sets
    for it in ans :
        print("( ", end = "")
        for i in ans[it] :
            print(i , end = " ")
     
        print(")")
 
arr = [ 2, 1, 2, 3, 1, 4, 1, 3, 1, 4 ]
n = len(arr)
 
k = 4
 
splitSets(arr, n, k)
 
# This code is contributed by divyesh072019


C#




// C# Program to split N elements
// into exactly K sets consisting
// of no distinct elements
using System;
using System.Collections.Generic;
class GFG
{
 
  // Function to check if possible to
  // split N elements into exactly K
  // sets consisting of no distinct elements
  static void splitSets(int[] a, int n, int k)
  {
    // Store the frequency
    // of each element
    Dictionary<int, int> freq = new Dictionary<int, int>();
 
    // Store the required sets
    Dictionary<int, List<int>> ans = new Dictionary<int, List<int>>();
 
    for (int i = 0; i < n; i++)
    {
 
      // If frequency of a
      // particular element
      // exceeds K
      if(freq.ContainsKey(a[i]))
      {
        if(freq[a[i]] + 1 > k)
        {
 
          // Not possible
          Console.WriteLine(-1);
          return;
        }
      }
      else if(1 > k)
      {
         
        // Not possible
        Console.WriteLine(-1);
        return;
      }
 
      // Increase the frequency
      if(freq.ContainsKey(a[i]))
      {
        freq[a[i]] += 1;
      }
      else
      {
        freq[a[i]] = 1;
      }
 
      // Store the element for the
      // respective set
      if(ans.ContainsKey(freq[a[i]]))
      {
        ans[freq[a[i]]].Add(a[i]);
      }
      else
      {
        ans[freq[a[i]]] = new List<int>();
        ans[freq[a[i]]].Add(a[i]);
      }
 
    }
 
    // Display the sets
    foreach(KeyValuePair<int, List<int>> it in ans)
    {
      Console.Write("( ");
      foreach(int i in it.Value)
      {
        Console.Write(i + " ");
      }
      Console.WriteLine(")");
    }
  }
 
  // Driver code
  static void Main()
  {
    int[] arr = { 2, 1, 2, 3, 1,
                 4, 1, 3, 1, 4 };
    int n = arr.Length;
    int k = 4;
    splitSets(arr, n, k);
  }
}
 
// This code is contributed by divyeshrabadiya07


Javascript




// JS Program to split N elements
// into exactly K sets consisting
// of no distinct elements
 
// Function to check if possible to
// split N elements into exactly K
// sets consisting of no distinct elements
function splitSets(a, n, k)
{
 
    // Store the frequency
    // of each element
    let freq = {};
 
    // Store the required sets
    let ans = {};
 
    for (var i = 0; i < n; i++) {
        // If frequency of a
        // particular element
        // exceeds K
        if (freq[a[i]] + 1 > k) {
            // Not possible
            console.log (-1);
            return;
        }
 
        // Increase the frequency
        if (!freq.hasOwnProperty(a[i]))
            freq[a[i]] = 0
        freq[a[i]] += 1;
         
        // Store the element for the
        // respective set
        if (!ans.hasOwnProperty(freq[a[i]]))
            ans[freq[a[i]]] = []
        ans[freq[a[i]]].push(a[i]);
    }
 
    // Display the sets
    for (var [k, it] of Object.entries(ans)) {
        console.log("(", it.join(" "), ")")
    }
}
 
 
// Driver code
let arr = [ 2, 1, 2, 3, 1, 4, 1, 3, 1, 4 ];
let n = arr.length;
let k = 4;
splitSets(arr, n, k);
 
// This code is contributed by phasing17


Output: 

( 2 1 3 4 )
( 2 1 3 4 )
( 1 )
( 1 )

 

Time complexity: O(nlogn) since using a for loop

Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments