Monday, January 6, 2025
Google search engine
HomeData Modelling & AISplit an Array A into Subsets having equal Sum and sizes equal...

Split an Array A[] into Subsets having equal Sum and sizes equal to elements of Array B[]

Given an array A[] consisting of N integers, the task is to split the array A[] into subsets having equal sum and of length equal to elements in array B[].

Examples:

Input: A[] = {17, 13, 21, 20, 50, 29}, B[] = {2, 3, 1} Output: 21 29 17 13 20 50 Input: A[] = { 1, 2, 3, 4, 5, 6}, B[] = { 2, 2, 2} Output: 1 6 2 5 3 4

Approach: Follow the steps below to solve the problem:

  • Since the count of subsets is already given, calculate the sum of each subset.
  • Traverse through each element of array B[], find each possible combination of length B[i] and check if the sum of the combination is equal to the desired sum or not.
  • Repeat the above steps for every array element B[i] and print the final answer

Below is the implementation of the above approach:

Python




# Python Program to implement
# the above approach
from itertools import combinations
 
# Function to split elements of first
# array into subsets of size given as
# elements in the second array
def main(A, B):
 
    # Required sum of subsets
    req_sum = sum(A) // len(B)
 
    # Stores the subsets
    final = []
 
    # Iterate the array B[]
    for i in B:
 
        # Generate all possible
        # combination of length B[i]
        temp = list(combinations(A, i))
 
    # Iterate over all the combinations
        for j in temp:
 
            # If the sum is equal to the
            # required sum of subsets
            if(sum(j) == req_sum):
 
                # Store the subset
                temp = list(j)
                final.append(temp)
 
                for k in temp:
 
                    # Removing the subset
                    # from the array
                    A.remove(k)
                break
 
    # Printing the final result
    print(final)
 
 
# Driver Code
if __name__ == '__main__':
    # Value of array A and B
    A = [1, 2, 3, 4, 5, 6]
    B = [2, 2, 2]
 
    # Function call
    main(A, B)


Java




import java.util.*;
import java.math.*;
 
public class Main {
 
    // Function to split elements of first
    // array into subsets of size given as
    // elements in the second array
    static void main(int[] A, int[] B) {
 
        // Required sum of subsets
        int req_sum = Arrays.stream(A).sum() / B.length;
 
        // Stores the subsets
        List<List<Integer>> finalList = new ArrayList<>();
 
        // Iterate the array B[]
        for (int i : B) {
 
            // Generate all possible
            // combination of length B[i]
            List<List<Integer>> tempList = subsets(A, i);
 
            // Iterate over all the combinations
            for (List<Integer> j : tempList) {
 
                // If the sum is equal to the
                // required sum of subsets
                if (j.stream().mapToInt(Integer::intValue).sum() == req_sum) {
 
                    // Store the subset
                    finalList.add(j);
 
                    // Removing the subset
                    // from the array
                    A = removeElements(A, j);
                    break;
                }
            }
        }
 
        // Printing the final result
        System.out.println(finalList);
    }
 
    private static int[] removeElements(int[] A, List<Integer> j) {
        List<Integer> result = new ArrayList<>();
        for (int i : A) {
            if (!j.contains(i)) {
                result.add(i);
            }
        }
        return result.stream().mapToInt(Integer::intValue).toArray();
    }
 
    private static List<List<Integer>> subsets(int[] A, int i) {
        List<List<Integer>> result = new ArrayList<>();
        combinations(A, 0, i, new ArrayList<>(), result);
        return result;
    }
 
    private static void combinations(int[] A, int start, int k, List<Integer> current, List<List<Integer>> result) {
        if (k == 0) {
            result.add(new ArrayList<>(current));
            return;
        }
        for (int i = start; i < A.length; i++) {
            current.add(A[i]);
            combinations(A, i + 1, k - 1, current, result);
            current.remove(current.size() - 1);
        }
    }
 
    // Driver Code
    public static void main(String[] args) {
        // Value of array A and B
        int[] A = new int[]{1, 2, 3, 4, 5, 6};
        int[] B = new int[]{2, 2, 2};
 
        // Function call
        main(A, B);
    }
}


Javascript




// Function to split elements of first
// array into subsets of size given as
// elements in the second array
function main(A, B) {
 
  // Required sum of subsets
  const req_sum = Math.floor(A.reduce((a, b) => a + b, 0) / B.length);
 
  // Stores the subsets
  const final = [];
 
  // Iterate the array B[]
  for (const i of B) {
 
    // Generate all possible
    // combination of length B[i]
    const temp = combinations(A, i);
 
    // Iterate over all the combinations
    for (const j of temp) {
 
      // If the sum is equal to the
      // required sum of subsets
      if(j.reduce((a, b) => a + b, 0) == req_sum){
 
        // Store the subset
        const subset = [...j];
        final.push(subset);
 
        for (const k of subset) {
 
          // Removing the subset
          // from the array
          A.splice(A.indexOf(k), 1);
        }
        break;
      }
    }
  }
 
  // Printing the final result
  console.log(final);
}
 
// Helper function to generate all possible
// combinations of length k from an array A
function combinations(A, k) {
  if (k === 0) {
    return [[]];
  }
  if (A.length === 0) {
    return [];
  }
  const [first, ...rest] = A;
  const combsWithoutFirst = combinations(rest, k);
  const combsWithFirst = combinations(rest, k - 1);
  const combsWithFirstMapped = combsWithFirst.map(comb => [first, ...comb]);
  return [...combsWithoutFirst, ...combsWithFirstMapped];
}
 
// Driver Code
const A = [1, 2, 3, 4, 5, 6];
const B = [2, 2, 2];
 
// Function call
main(A, B);


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class Program
{
    // Function to split elements of first
    // array into subsets of size given as
    // elements in the second array
    static void Main(int[] A, int[] B)
    {
        // Required sum of subsets
        int req_sum = A.Sum() / B.Length;
 
        // Stores the subsets
        List<List<int>> final = new List<List<int>>();
 
        // Iterate the array B[]
        foreach (int i in B)
        {
            // Generate all possible
            // combination of length B[i]
            List<int[]> temp = GetCombinations(A, i);
 
            // Iterate over all the combinations
            foreach (int[] j in temp)
            {
                // If the sum is equal to the
                // required sum of subsets
                if (j.Sum() == req_sum)
                {
                    // Store the subset
                    List<int> subset = j.ToList();
                    final.Add(subset);
 
                    foreach (int k in subset)
                    {
                        // Removing the subset
                        // from the array
                        A = A.Where(val => val != k).ToArray();
                    }
                    break;
                }
            }
        }
 
        // Printing the final result
        Console.WriteLine("[{0}]", string.Join(", ", final.Select(x => "[" + string.Join(", ", x) + "]")));
    }
 
    // Function to generate all possible
    // combinations of given length
    static List<int[]> GetCombinations(int[] arr, int len)
    {
        List<int[]> result = new List<int[]>();
 
        // Edge case
        if (len > arr.Length)
        {
            return result;
        }
 
        // Generate all possible combinations
        for (int i = 0; i < arr.Length; i++)
        {
            int[] temp = new int[len];
            temp[0] = arr[i];
 
            if (len == 1)
            {
                result.Add(temp);
            }
            else
            {
                List<int[]> nextCombos = GetCombinations(arr.Skip(i + 1).ToArray(), len - 1);
                foreach (int[] combo in nextCombos)
                {
                    combo.CopyTo(temp, 1);
                    result.Add(temp);
                    temp = new int[len];
                    temp[0] = arr[i];
                }
            }
        }
 
        return result;
    }
 
    // Driver code
    static void Main()
    {
        // Value of array A and B
        int[] A = new int[] { 1, 2, 3, 4, 5, 6 };
        int[] B = new int[] { 2, 2, 2 };
 
        // Function call
        Main(A, B);
    }
}
// This code is contributed by divyansh2212


C++




#include <bits/stdc++.h>
#include <vector>
#include <numeric> // for std::accumulate
 
using namespace std;
 
void combinations(vector<int>& A, int start, int k, vector<int> current, vector<vector<int>>& result) {
    if (k == 0) {
        result.push_back(current);
        return;
    }
    for (int i = start; i < A.size(); i++) {
        current.push_back(A[i]);
        combinations(A, i + 1, k - 1, current, result);
        current.pop_back();
    }
}
 
vector<vector<int>> subsets(vector<int>& A, int k) {
    vector<vector<int>> result;
    combinations(A, 0, k, {}, result);
    return result;
}
 
vector<int> removeElements(vector<int>& A, vector<int>& j) {
    vector<int> result;
    for (int i : A) {
        if (find(j.begin(), j.end(), i) == j.end()) {
            result.push_back(i);
        }
    }
    return result;
}
 
// Function to split elements of first
// array into subsets of size given as
// elements in the second array
void mainFunc(vector<int>& A, vector<int>& B) {
 
    // Required sum of subsets
    int req_sum = accumulate(A.begin(), A.end(), 0) / B.size();
 
    // Stores the subsets
    vector<vector<int>> finalList;
 
    // Iterate the array B[]
    for (int i : B) {
 
        // Generate all possible
        // combination of length B[i]
        vector<vector<int>> tempList = subsets(A, i);
 
        // Iterate over all the combinations
        for (vector<int> j : tempList) {
 
            // If the sum is equal to the
            // required sum of subsets
            if (accumulate(j.begin(), j.end(), 0) == req_sum) {
 
                // Store the subset
                finalList.push_back(j);
 
                // Removing the subset
                // from the array
                A = removeElements(A, j);
                break;
            }
        }
    }
 
    // Printing the final result
    cout<<"[";
    int i=0;
    for (vector<int> subset : finalList) {
            cout <<"["<<subset[0] << ","<<subset[1]<<"]";
            if(i<finalList.size()-1)
                cout<<", ";
            i++;
    }
            cout << "]";
 
}
 
// Driver Code
int main() {
    // Value of array A and B
    vector<int> A{1, 2, 3, 4, 5, 6};
    vector<int> B{2, 2, 2};
 
    // Function call
    mainFunc(A, B);
    return 0;
}


Output:

[[1, 6], [2, 5], [3, 4]]

Time Complexity: O(N3) Auxiliary Space: O(2maxm), where maxm is the maximum element in array B[]

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments