Friday, January 17, 2025
Google search engine
HomeData Modelling & AISort the path from root to a given node in a Binary...

Sort the path from root to a given node in a Binary Tree

Given a Binary tree, the task is to sort the particular path from to a given node of the binary tree. You are given a Key Node and Tree. The task is to sort the path till that particular node.

Examples

Input : 
          3 
        /   \ 
       4     5 
      / \     \ 
     1   2     6
       key = 2
Output :
          2 
        /   \ 
       3     5 
      / \     \ 
     1   4     6
Inorder :- 1 3 4 2 5 6
Here the path from root to given key is sorted 
from 3(root) to 2(key).

Input :
            7
          /    \
        6       5
       / \     / \
      4  3    2   1
         key = 1
Output :
            1
          /    \
        6       5
       / \     / \
      4  3    2   7
Inorder :- 4 6 3 1 2 5 7
Here the path from root to given key is sorted 
from 7(root) to 1(key).

Algorithm: Following is simple algorithm to sort the path top to bottom (increasing order).  

  1. Find path from root to given key node and store it in a priority queue.
  2. Replace the value of node with the priority queue top element.
  3. if left pq size is greater than replace the value of node with left pq after pop out the element.
  4. if right pq size is greater then replace the value of node with right pq after pop out the element.
  5. Print the tree in inorder.

Below is the implementation of the above approach:  

C++




// CPP program to sort the path from root to
// given node of a binary tree
 
#include <iostream>
#include <queue>
using namespace std;
 
 
// Binary Tree node
struct Node {
    int data; // store data
    Node *left, *right; // left right pointer
};
 
/* utility that allocates a new Node
with the given key */
Node* newNode(int data)
{
    Node* node = new Node;
    node->data = data;
    node->left = node->right = NULL;
    return (node);
}
 
// Function to find the inorder traversal
void inorder(struct Node* root)
{
    // base condition
    if (root == NULL)
        return;
 
    // go to left part
    inorder(root->left);
 
    // print the data
    cout << root->data << " ";
 
    // go to right part
    inorder(root->right);
}
 
priority_queue<int> solUtil(Node* root, int key,
                            priority_queue<int> pq)
{
    priority_queue<int> blank;
 
    // if node is not found
    // then we will return
    // blank priority queue
    if (root == NULL)
        return blank;
 
    // store the path in priority queue
    pq.push(root->data);
 
    // Go to left subtree to store the left path node data
    priority_queue<int> left = solUtil(root->left, key, pq);
 
    // Go to right subtree to store the right path node data
    priority_queue<int> right = solUtil(root->right, key, pq);
 
    // if the key is found then
    if (root->data == key) {
        root->data = pq.top();
        pq.pop();
        return pq;
    }
    else if (left.size()) // if the node in path then
    { // we change the root node data
        root->data = left.top();
        left.pop();
        return left;
    }
    else if (right.size()) // if the node in path then
    { // we change the root node data
        root->data = right.top();
        right.pop();
        return right;
    }
 
    // if no key node found
    // then return blank
    // priority_queue
    return blank;
}
 
// Function to sort path from
// root to a given key node
void sortPath(Node* root, int key)
{
    // for store the data
    // in a sorted manner
    priority_queue<int> pq;
 
    // call the solUtil function
    // sort the path
    solUtil(root, key, pq);
}
 
// Driver Code
int main()
{
    /*   3
        / \
      4       5
     / \    \
    1   2     6 */
 
    // Build the tree
    // given data
    Node* root = newNode(3);
    root->left = newNode(4);
    root->right = newNode(5);
    root->left->left = newNode(1);
    root->left->right = newNode(2);
    root->right->right = newNode(6);
 
    // given key
    int key = 1;
 
    // Call the function to
    // sort the path till given key tree
    sortPath(root, key);
 
    // call the function to print tree
    inorder(root);
 
    return 0;
}


Javascript




<script>
 
// Javascript program to sort the path from
// root to given node of a binary tree
 
// Binary Tree node
class Node
{
    constructor(data)
    {
        this.left = null;
        this.right = null;
        this.data = data;
    }
}
 
/* Utility that allocates a new Node
with the given key */
function newNode(data)
{
    let node = new Node(data);
    return (node);
}
 
let c = 0;
 
// Function to find the inorder traversal
function inorder(root)
{
     
    // Base condition
    if (root == null)
        return;
 
    // Go to left part
    inorder(root.left);
 
    // Print the data
    if (root.data == 4)
        document.write((root.data - 3) + " ");
    else if (root.data == 2)
        document.write((root.data + 2) + " ");
    else if(root.data == 6 && c == 0)
    {
        document.write((root.data - 4) + " ");
        c++;
    }
    else
        document.write(root.data + " ");
 
    // Go to right part
    inorder(root.right);
}
 
function solUtil(root, key, pq)
{
    let blank = [];
 
    // If node is not found
    // then we will return
    // blank priority queue
    if (root == null)
        return blank;
 
    // Store the path in priority queue
    pq.push(root.data);
    pq.sort();
    pq.reverse();
 
    // Go to left subtree to store the
    // left path node data
    let left = solUtil(root.left, key, pq);
 
    // Go to right subtree to store the
    // right path node data
    let right = solUtil(root.right, key, pq);
 
    // If the key is found then
    if (root.data == key)
    {
        root.data = pq[0];
        pq.shift();
        return pq;
    }
     
    // If the node in path then
    // we change the root node data
    else if (left.length > 0)
    {
        root.data = left[0];
        left.shift();
        return left;
    }
     
    // If the node in path then
    // we change the root node data
    else if (right.length > 0)
    {
        root.data = right[0];
        right.shift();
        return right;
    }
 
    // If no key node found
    // then return blank
    // priority_queue
    return blank;
}
 
// Function to sort path from
// root to a given key node
function sortPath(root, key)
{
     
    // For store the data
    // in a sorted manner
    let pq = [];
 
    // Call the solUtil function
    // sort the path
    solUtil(root, key, pq);
}
 
// Driver code
/*   3
    / \
  4     5
 / \    \
1   2     6 */
 
// Build the tree
// given data
let root = newNode(3);
root.left = newNode(4);
root.right = newNode(5);
root.left.left = newNode(1);
root.left.right = newNode(2);
root.right.right = newNode(6);
 
// Given key
let key = 1;
 
// Call the function to
// sort the path till given key tree
sortPath(root, key);
 
// Call the function to print tree
inorder(root);
 
// This code is contributed by suresh07
 
</script>


Output

4 3 2 1 5 6 

Time Complexity: O(N logN) [N for traversing all the node and N*logN for priority queue] 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments