Thursday, January 9, 2025
Google search engine
HomeData Modelling & AISort the Array by reversing the numbers in it

Sort the Array by reversing the numbers in it

Given an array arr[] of N non-negative integers, the task is to sort these integers according to their reverse.

Examples:

Input: arr[] = {12, 10, 102, 31, 15} 
Output: 10 31 12 15 102 
Reversing the numbers: 
12 -> 21 
10 -> 01 
102 -> 201 
31 -> 13 
15 -> 51 
Sorting the reversed numbers: 01 13 21 51 201 
Original sorted array: 10 13 12 15 102

Input: arr[] = {12, 10} 
Output: 10 12 

Approach: The idea is to store each element with its reverse in a vector pair and then sort all the elements of the vector according to the reverse stored. Finally, print the elements in order.

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// reverse of n
int reverseDigits(int num)
{
    int rev_num = 0;
    while (num > 0) {
        rev_num = rev_num * 10 + num % 10;
        num = num / 10;
    }
    return rev_num;
}
 
// Function to sort the array according to
// the reverse of elements
void sortArr(int arr[], int n)
{
    // Vector to store the reverse
    // with respective elements
    vector<pair<int, int> > vp;
 
    // Inserting reverse with elements
    // in the vector pair
    for (int i = 0; i < n; i++) {
        vp.push_back(
            make_pair(reverseDigits(arr[i]),
                      arr[i]));
    }
 
    // Sort the vector, this will sort the pair
    // according to the reverse of elements
    sort(vp.begin(), vp.end());
 
    // Print the sorted vector content
    for (int i = 0; i < vp.size(); i++)
        cout << vp[i].second << " ";
}
 
// Driver code
int main()
{
    int arr[] = { 12, 10, 102, 31, 15 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    sortArr(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG{
     
// Function to return the
// reverse of n
static int reverseDigits(int num)
{
    int rev_num = 0;
    while (num > 0)
    {
        rev_num = rev_num * 10 + num % 10;
        num = num / 10;
    }
    return rev_num;
}
   
// Function to sort the array according
// to the reverse of elements
static void sortArr(int arr[], int n)
{
     
    // Vector to store the reverse
    // with respective elements
    ArrayList<int[]> vp = new ArrayList<>();
   
    // Inserting reverse with elements
    // in the vector pair
    for(int i = 0; i < n; i++)
    {
        vp.add(new int[]{reversDigits(arr[i]),
                                      arr[i]});
    }
   
    // Sort the vector, this will sort the pair
    // according to the reverse of elements
    Collections.sort(vp, (a, b) -> a[0] - b[0]);
   
    // Print the sorted vector content
    for(int i = 0; i < vp.size(); i++)
        System.out.print(vp.get(i)[1] + " ");
}
  
// Driver code
public static void main(String[] args)
{
    int arr[] = { 12, 10, 102, 31, 15 };
    int n = arr.length;
     
    sortArr(arr, n);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 implementation of the approach
 
# Function to return the
# reverse of n
def reverseDigits(num) :
 
    rev_num = 0;
    while (num > 0) :
        rev_num = rev_num * 10 + num % 10;
        num = num // 10;
 
    return rev_num;
 
# Function to sort the array according to
# the reverse of elements
def sortArr(arr, n) :
 
    # Vector to store the reverse
    # with respective elements
    vp = [];
 
    # Inserting reverse with elements
    # in the vector pair
    for i in range(n) :
        vp.append((reversDigits(arr[i]),arr[i]));
 
    # Sort the vector, this will sort the pair
    # according to the reverse of elements
    vp.sort()
 
    # Print the sorted vector content
    for i in range(len(vp)) :
        print(vp[i][1],end= " ");
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 12, 10, 102, 31, 15 ];
    n = len(arr);
 
    sortArr(arr, n);
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
class GFG
{
     
    // Function to return the
    // reverse of n
    static int reverseDigits(int num)
    {
        int rev_num = 0;
        while (num > 0)
        {
            rev_num = rev_num * 10 + num % 10;
            num = num / 10;
        }
        return rev_num;
    }
      
    // Function to sort the array according to
    // the reverse of elements
    static void sortArr(int[] arr, int n)
    {
       
        // Vector to store the reverse
        // with respective elements
        List<Tuple<int, int>> vp = new List<Tuple<int, int>>();
      
        // Inserting reverse with elements
        // in the vector pair
        for (int i = 0; i < n; i++)
        {
            vp.Add(new Tuple<int, int>(reversDigits(arr[i]),arr[i]));
        }
      
        // Sort the vector, this will sort the pair
        // according to the reverse of elements
        vp.Sort();
      
        // Print the sorted vector content
        for (int i = 0; i < vp.Count; i++)
            Console.Write(vp[i].Item2 + " ");
    }
 
  // Driver code
  static void Main()
  {
    int[] arr = { 12, 10, 102, 31, 15 };
    int n = arr.Length;
  
    sortArr(arr, n);
  }
}
 
// This code is contributed by divyesh072019


Javascript




<script>
// Javascript implementation of the
// above approach
 
// Function to return the
// reverse of n
function reverseDigits(num)
{
    var rev_num = 0;
    while (num > 0) {
        rev_num = rev_num * 10 + num % 10;
        num = Math.floor(num / 10);
    }
    return rev_num;
}
  
// Function to sort the array according to
// the reverse of elements
function sortArr(arr, n)
{
    // Vector to store the reverse
    // with respective elements
    var vp = new Array(n);
    for (var i = 0; i < n; i++) {
        vp[i] = [];
    }
    // Inserting reverse with elements
    // in the vector pair
    for (var i = 0; i < n; i++) {
        var pair = [];
        pair.push(reversDigits(arr[i]));
        pair.push(arr[i]);
        vp[i] = pair;
    }
  
    // Sort the vector, this will sort the pair
    // according to the reverse of elements
    vp = vp.sort(function(a,b) {
        return a[0] - b[0];
    });
  
    // Print the sorted vector content
    for (var i = 0; i < n; i++){
        document.write(vp[i][1] + " ");
    }
}
// Driver code
var arr = [ 12, 10, 102, 31, 15 ];
var n = arr.length;
 
sortArr(arr, n);
 
// This code is contributed by Shivanisingh
</script>


Output: 

10 31 12 15 102

 

Time Complexity: 

O(N*log N),     where N is the size of the array

Auxiliary Space: O(N)
 

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments