Friday, December 27, 2024
Google search engine
HomeData Modelling & AISort Permutation of 1 to N by removing any element and inserting...

Sort Permutation of 1 to N by removing any element and inserting it to front or back

Given an array arr[] of size N having distinct integers from 1 to N, the task is to count the minimum number of steps required to sort the array in increasing order by removing any element and inserting it to the front or back of the array.

Examples:

Input: arr[ ] = {4, 1, 3, 2}
Output: 2
Explanation:
The given array can be sorted in increasing order by following two operations:
Operation 1: Remove 3 and add it to the back of the array. {4, 1, 3, 2} -> {4, 1, 2, 3}
Operation 2: Remove 4 and add it to the back of the array. {4, 1, 2, 3} -> {1, 2, 3, 4}

Input: arr[ ] = {4, 1, 2, 5, 3}
Output: 2

Approach: The problem can be solved by using the fact that to make the array sorted in a minimum number of steps, the minimum number of elements must be moved to the front or back. Also, the elements whose position must be changed will not lie in the increasing order initially. So the problem reduces to finding the longest increasing subarray as only those elements of the array will not be moved. 

Below is the implementation of the above approach:

C++




// CPP program for the above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to find the minimum steps
// to sort the array
void findMinStepstoSort(int arr[], int N){
 
  // Storing the positions of elements
  map<int,int> pos;
  for(int i = 0; i < N; i++)
    pos[arr[i]] = i;
 
  // Initialize answer
  int ans = N-1;
  int prev = -1;
  int count = 0;
 
  // Traversing the array
  for(int i = 1; i < N + 1; i++){
 
    // If current is greater than
    // previous
    if(pos[i] > prev)
      count += 1;
 
    // else if current is less than
    // previous
    else
      count = 1;
 
    // Updating previous
    prev = pos[i];
 
    // Updating ans
    ans = min(ans, N - count);
   }
  cout<<ans;
}
 
 
// Driver Code
int main(){
 
  int N = 5;
  int arr[] = {4, 1, 2, 5, 3};
 
  findMinStepstoSort(arr, N);
 
}
 
// This code is contributed by SURENDRA_GANGWAR.


Java




// JAVA program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find the minimum steps
// to sort the array
static void findMinStepstoSort(int arr[], int N){
 
  // Storing the positions of elements
  HashMap<Integer,Integer> pos = new HashMap<>();
  for(int i = 0; i < N; i++)
    pos.put(arr[i], i);
 
  // Initialize answer
  int ans = N - 1;
  int prev = -1;
  int count = 0;
 
  // Traversing the array
  for(int i = 1; i < N + 1; i++){
 
    // If current is greater than
    // previous
    if(pos.get(i) > prev)
      count += 1;
 
    // else if current is less than
    // previous
    else
      count = 1;
 
    // Updating previous
    prev = pos.get(i);
 
    // Updating ans
    ans = Math.min(ans, N - count);
   }
  System.out.print(ans);
}
 
// Driver Code
public static void main(String[] args){
 
  int N = 5;
  int arr[] = {4, 1, 2, 5, 3};
 
  findMinStepstoSort(arr, N);
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python program for the above approach
 
# Function to find the minimum steps
# to sort the array
def findMinStepstoSort(arr, N):
 
  # Storing the positions of elements
  pos = {arr[i]:i for i in range(N)}
  
  # Initialize answer
  ans = N-1
  prev = -1;count = 0
 
  # Traversing the array
  for i in range(1, N + 1):
 
    # If current is greater than
    # previous
    if pos[i] > prev:
      count += 1
 
    # else if current is less than
    # previous
    else:
      count = 1
 
    # Updating previous
    prev = pos[i]
 
    # Updating ans
    ans = min(ans, N - count)
  print(ans)
 
 
# Driver Code
if __name__ == '__main__':
  N = 5
  arr = [4, 1, 2, 5, 3]
 
  findMinStepstoSort(arr, N)


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
// Function to find the minimum steps
// to sort the array
static void findMinStepstoSort(int[] arr, int N){
 
  // Storing the positions of elements
  Dictionary<int, int> pos = new
                Dictionary<int, int>();
  for(int i = 0; i < N; i++)
    pos[arr[i]] = i;
 
  // Initialize answer
  int ans = N - 1;
  int prev = -1;
  int count = 0;
 
  // Traversing the array
  for(int i = 1; i < N + 1; i++){
 
    // If current is greater than
    // previous
    if(pos[i] > prev)
      count += 1;
 
    // else if current is less than
    // previous
    else
      count = 1;
 
    // Updating previous
    prev = pos[i];
 
    // Updating ans
    ans = Math.Min(ans, N - count);
   }
  Console.WriteLine(ans);
}
     
    // Driver Code
    public static void Main (string[] args)
    {
        int N = 5;
        int[] arr = {4, 1, 2, 5, 3};
 
        findMinStepstoSort(arr, N);
    }
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to find the minimum steps
        // to sort the array
        function findMinStepstoSort(arr, N) {
 
            // Storing the positions of elements
            let pos = new Array(N);
 
            for (let i = 0; i < N; i++) {
                pos[i] = arr[i];
            }
 
            // Initialize answer
            ans = N - 1
            prev = -1; count = 0
 
            // Traversing the array
            for (let i = 1; i < N + 1; i++) {
 
                // If current is greater than
                // previous
                if (pos[i] > prev)
                    count += 1
 
                // else if current is less than
                // previous
                else
                    count = 1
 
                // Updating previous
                prev = pos[i]
 
                // Updating ans
                ans = Math.min(ans, N - count)
            }
            document.write(ans)
 
        }
 
        let N = 5
        let arr = [4, 1, 2, 5, 3]
 
        findMinStepstoSort(arr, N)
         
// This code is contributed by Potta Lokesh
    </script>


Output

2

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments