Saturday, December 28, 2024
Google search engine
HomeLanguagesSort Dataframe according to row frequency in Pandas

Sort Dataframe according to row frequency in Pandas

In this article, we will discuss how to use count() and sort_values() in pandas. So the count in pandas counts the frequency of elements in the dataframe column and then sort sorts the dataframe according to element frequency.

  • count(): This method will show you the number of values for each column in your DataFrame.
  • sort_values(): This method helps us to sort our dataframe. In this method, we pass the column and our data frame is sorted according to this column.

Example 1: Program to sort data frame in descending order according to the element frequency.

Python




# import pandas
import pandas as pd
  
# create dataframe
df = pd.DataFrame({'Name': ['Mukul', 'Rohan', 'Mukul', 'Manoj',
                            'Kamal', 'Rohan', 'Robin'],
                     
                   'age': [22, 22, 21, 20, 21, 24, 20]})
  
# print dataframe
print(df)
  
# use count() and sort()
df = df.groupby(['Name'])['age'].count().reset_index(
  name='Count').sort_values(['Count'], ascending=False)
  
# print dataframe
print(df)


Output:

Example 2: Program to sort data frame in ascending order according to the element frequency.

Python




# import pandas
import pandas as pd
  
# create dataframe
df = pd.DataFrame({'Name': ['Mukul', 'Rohan', 'Mukul', 'Manoj',
                            'Kamal', 'Rohan', 'Robin'],
                     
                   'age': [22, 22, 21, 20, 21, 24, 20]})
  
# print dataframe
print(df)
  
# use count() and sort()
df = df.groupby(['Name'])['age'].count().reset_index(
  name='Count').sort_values(['Count'], ascending=True)
  
# print dataframe
print(df)


Output:

RELATED ARTICLES

Most Popular

Recent Comments