Given a string consisting of the first N distinct alphabets, the task is to sort the string by using at most N/2 moves. Each move involves the following:
- Select any 3 distinct indices.
- Perform a cyclic shift on the alphabets at these indices.
If it is possible to sort the strings, print the count of required moves. Otherwise, print “Not Possible”.
Examples:
Input: str = “cbda”
Output:
possible
1
Explanation:
Selecting the indices 0, 2 and 3 and performing a single circular shift among them, the given string “cbda” is converted to “abcd”.Input: str = “cba”
Output: Not Possible
Approach:
In order to solve the problem, follow the steps below:
- Store the integers denoting correct of characters of the string in a vector .
- Place those elements correctly which can all occupy correct indices in a single cycle.
- Traverse an element of the vector
- If the element is not at its sorted index position, check if two or more numbers can be placed at correct indices in one cycle. If the condition is satisfied, perform the cycle otherwise check if there is a distinct index that does not hold the correct element available. If the condition is satisfied, select this index as the third index of the cycle and perform the cycle. If neither of the above conditions are satisfied, sorting would be impossible. Hence, break out of the loop and print “Not Possible”.
- Once a cyclic shift is performed, store the indices involved in the shift.
- If the element is at its sorted position, move to the next index.
- Repeat the above two steps for all vector elements.
- After the traversal is completed, if the entire array is in sorted order, print the shifts required. Else print “Not Possible”.
Below is the implementation of the above approach:
C++
// C++ Program for sorting a // string using cyclic shift // of three indices #include <bits/stdc++.h> using namespace std; void sortString(vector<int>& arr, int n, int moves) { // Store the indices // which haven't attained // its correct position vector<int> pos; // Store the indices // undergoing cyclic shifts vector<vector<int> > indices; bool flag = false; for (int i = 0; i < n; i++) { // If the element is not at // it's correct position if (arr[i] != i) { // Check if all 3 indices can be // placed to respective correct // indices in a single move if (arr[arr[arr[i]]] == i && arr[arr[i]] != i) { int temp = arr[arr[i]]; indices.push_back({ i, arr[i], arr[arr[i]] }); swap(arr[i], arr[arr[i]]); swap(arr[i], arr[temp]); } } // If the i-th index is still // not present in its correct // position, store the index if (arr[i] != i) { pos.push_back(i); } } for (int i = 0; i < n; i++) { if (arr[i] != i) { int pos1 = i, pos2 = arr[i]; int pos3 = arr[arr[i]]; // To check if swapping two indices // places them in their correct // position if (pos3 != pos1) { indices.push_back({ pos1, pos2, pos3 }); swap(arr[pos1], arr[pos2]); swap(arr[pos1], arr[pos3]); pos.erase(find( pos.begin(), pos.end(), pos2)); pos.erase(find( pos.begin(), pos.end(), pos3)); if (arr[pos1] == pos1) { pos.erase(find( pos.begin(), pos.end(), pos1)); } } else { if (pos3 == *pos.begin()) { if (*pos.begin() != pos.back()) { auto it = ++pos.begin(); pos3 = *(it); if (*it != pos.back() && pos3 == pos2) { pos3 = *(++it); } else if (*it == pos.back() && pos3 == pos2) { flag = true; break; } } else { flag = true; break; } } indices.push_back({ pos1, pos2, pos3 }); swap(arr[pos1], arr[pos2]); swap(arr[pos1], arr[pos3]); pos.erase(find( pos.begin(), pos.end(), pos2)); } } if (arr[i] != i) { i--; } } if (flag == true || indices.size() > moves) { cout << "Not Possible" << endl; } else { cout << indices.size() << endl; // Inorder to see the indices that // were swapped in rotations, // uncomment the below code /* for (int i = 0; i < indices.size(); i++) { cout << indices[i][0] << " " << indices[i][1] << " " << indices[i][2] << endl; } */ } } // Driver Code int main() { string s = "adceb"; vector<int> arr; for (int i = 0; i < s.size(); i++) { arr.push_back(s[i] - 'a'); } sortString(arr, s.size(), floor(s.size() / 2)); }
Java
// Java Program for sorting a // string using cyclic shift // of three indices import java.util.*; public class Main { public static void sortString(List<Integer> arr, int n, int moves) { List<Integer> pos = new ArrayList<>(); // Store the indices which haven't attained its correct position List<List<Integer>> indices = new ArrayList<>(); // Store the indices undergoing cyclic shifts boolean flag = false; for (int i = 0; i < n; i++) { // If the element is not at // it's correct position if (arr.get(i) != i) { // Check if all 3 indices can be // placed to respective correct // indices in a single move if (arr.get(arr.get(arr.get(i))) == i && arr.get(arr.get(i)) != i) { int temp = arr.get(arr.get(i)); indices.add(Arrays.asList(i, arr.get(i), arr.get(arr.get(i)))); Collections.swap(arr, i, arr.get(i)); Collections.swap(arr, i, temp); } } // If the i-th index is still // not present in its correct // position, store the index if (arr.get(i) != i) { pos.add(i); } } for (int i = 0; i < n; i++) { if (arr.get(i) != i) { int pos1 = i, pos2 = arr.get(i); int pos3 = arr.get(arr.get(i)); // To check if swapping two indices // places them in their correct // position if (pos3 != pos1) { indices.add(Arrays.asList(pos1, pos2, pos3)); Collections.swap(arr, pos1, pos2); Collections.swap(arr, pos1, pos3); pos.remove((Integer) pos2); pos.remove((Integer) pos3); if (arr.get(pos1) == pos1) { pos.remove((Integer) pos1); } } else { if (pos3 == pos.get(0)) { if (pos.get(0) != pos.get(pos.size() - 1)) { int index = pos.get(1); pos3 = index; if (index != pos.get(pos.size() - 1) && pos3 == pos2) { pos3 = pos.get(2); } else if (index == pos.get(pos.size() - 1) && pos3 == pos2) { flag = true; break; } } else { flag = true; break; } } indices.add(Arrays.asList(pos1, pos2, pos3)); Collections.swap(arr, pos1, pos2); Collections.swap(arr, pos1, pos3); pos.remove((Integer) pos2); } } if (arr.get(i) != i) { i--; } } if (flag || indices.size() > moves) { System.out.println("Not Possible"); } else { System.out.println(indices.size()); /* In order to see the indices that were swapped in rotations, * uncomment the below code for (List<Integer> index : indices) { System.out.println(index.get(0) + " " + index.get(1) + " " + index.get(2)); } */ } } //Driver code public static void main(String[] args) { String s = "adceb"; List<Integer> arr = new ArrayList<>(); for (int i = 0; i < s.length(); i++) { arr.add(s.charAt(i) - 'a'); } sortString(arr, s.length(), s.length() / 2); } } // contributed by adityasha4x71
Python3
# Python3 program for sorting a # string using cyclic shift # of three indices import math def sortString(arr, n, moves): # Store the indices # which haven't attained # its correct position pos = [] # Store the indices # undergoing cyclic shifts indices = [] flag = False for i in range(n): # If the element is not at # it's correct position if (arr[i] != i): # Check if all 3 indices can be # placed to respective correct # indices in a single move if (arr[arr[arr[i]]] == i and arr[arr[i]] != i): temp = arr[arr[i]] indices.append([i, arr[i], arr[arr[i]]]) sw = arr[i] arr[i] = arr[arr[i]] arr[sw] = sw sw = arr[i] arr[i] = arr[temp] arr[temp] = sw # If the i-th index is still # not present in its correct # position, store the index if (arr[i] != i): pos.append(i) for i in range(n): if (arr[i] != i): pos1 = i pos2 = arr[i] pos3 = arr[arr[i]] # To check if swapping two indices # places them in their correct # position if (pos3 != pos1): indices.append([pos1, pos2, pos3]) arr[pos1], arr[pos2] = arr[pos2], arr[pos1] arr[pos1], arr[pos3] = arr[pos3], arr[pos1] pos.remove(pos2) if pos3 in pos: pos.remove(pos3) if (arr[pos1] == pos1): pos.remove(pos1) else: if (pos3 == pos[0]): it = 0 if (pos[0] != pos[-1]): it = it + 1 pos3 = pos[it] if (pos[it] != pos[-1] and pos3 == pos2): it = it + 1 pos3 = pos[it] elif (pos[it] == pos[-1] and pos3 == pos2): flag = True break else: flag = True break indices.append([pos1, pos2, pos3]) arr[pos1], arr[pos2] = arr[pos2], arr[pos1] arr[pos1], arr[pos3] = arr[pos3], arr[pos1] pos.remove(pos2) if (arr[i] != i): i = i - 1 if (flag == True or len(indices) > moves): print("Not Possible") else: # Inorder to see the indices that # were swapped in rotations, # uncomment the below code # for i in range len(indices): # print (indices[i][0], # indices[i][1], indices[i][2]) print(len(indices)) # Driver code s = "adceb" arr = [] for i in s: arr.append(ord(i) - ord('a')) sortString(arr, len(s), math.floor(len(s) / 2)) # This code is contributed by costheta_z
C#
// Python3 program for sorting a // string using cyclic shift // of three indices using System; class MainClass { static void SortString(int[] arr, int n, int moves) { // Store the indices // which haven't attained // its correct position var pos = new System.Collections.Generic.List<int>(); // Store the indices // undergoing cyclic shifts var indices = new System.Collections.Generic.List<int[]>(); bool flag = false; for (int i = 0; i < n; i++) { // If the element is not at // it's correct position if (arr[i] != i) { // Check if all 3 indices can be // placed to respective correct // indices in a single move if (arr[arr[arr[i]]] == i && arr[arr[i]] != i) { int temp = arr[arr[i]]; indices.Add(new int[] { i, arr[i], arr[arr[i]] }); int sw = arr[i]; arr[i] = arr[arr[i]]; arr[sw] = sw; sw = arr[i]; arr[i] = arr[temp]; arr[temp] = sw; } // If the i-th index is still // not present in its correct // position, store the index if (arr[i] != i) { pos.Add(i); } } } for (int i = 0; i < n; i++) { if (arr[i] != i) { int pos1 = i; int pos2 = arr[i]; int pos3 = arr[arr[i]]; // To check if swapping two indices // places them in their correct // position if (pos3 != pos1) { indices.Add(new int[] { pos1, pos2, pos3 }); arr[pos1] = arr[pos2]; arr[pos2] = pos1; arr[pos1] = arr[pos3]; arr[pos3] = pos1; pos.Remove(pos2); if (pos.Contains(pos3)) { pos.Remove(pos3); } if (arr[pos1] == pos1) { pos.Remove(pos1); } } else { if (pos3 == pos[0]) { int it = 0; if (pos[0] != pos[pos.Count - 1]) { it++; pos3 = pos[it]; if (pos[it] != pos[pos.Count - 1] && pos3 == pos2) { it++; pos3 = pos[it]; } else if (pos[it] == pos[pos.Count - 1] && pos3 == pos2) { flag = true; break; } } else { flag = true; break; } } indices.Add(new int[] { pos1, pos2, pos3 }); arr[pos1] = arr[pos2]; arr[pos2] = pos1; arr[pos1] = arr[pos3]; arr[pos3] = pos1; pos.Remove(pos2); } } if (arr[i] != i) { i--; } } if (flag == true || indices.Count > moves) { Console.WriteLine("Not Possible"); } // Inorder to see the indices that // were swapped in rotations, // uncomment the below code // for i in range len(indices): // print (indices[i][0], // indices[i][1], indices[i][2]) else { Console.WriteLine(indices.Count); } } // Driver code public static void Main() { string s = "adceb"; int[] arr = new int[s.Length]; for (int i = 0; i < s.Length; i++) { arr[i] = s[i] - 'a'; } SortString(arr, s.Length, (int)Math.Floor(s.Length / 2.0)); } } // This code is contributed by shivhack999
Javascript
function sortString(arr, n, moves) { let indices = []; let flag = false; for (let i = 0; i < n; i++) { if (arr[i] !== i) { if (arr[arr[arr[i]]] === i && arr[arr[i]] !== i) { let temp = arr[arr[i]]; indices.push([i, arr[i], arr[arr[i]]]); [arr[i], arr[arr[i]]] = [arr[arr[i]], arr[i]]; [arr[i], arr[temp]] = [arr[temp], arr[i]]; } } if (arr[i] !== i) { pos.push(i); } } for (let i = 0; i < n; i++) { if (arr[i] !== i) { let pos1 = i, pos2 = arr[i]; let pos3 = arr[arr[i]]; if (pos3 !== pos1) { indices.push([pos1, pos2, pos3]); [arr[pos1], arr[pos2]] = [arr[pos2], arr[pos1]]; [arr[pos1], arr[pos3]] = [arr[pos3], arr[pos1]]; pos.splice(pos.indexOf(pos2), 1); pos.splice(pos.indexOf(pos3), 1); if (arr[pos1] === pos1) { pos.splice(pos.indexOf(pos1), 1); } } else { if (pos3 === pos[0]) { if (pos[0] !== pos[pos.length - 1]) { let it = pos[1]; pos3 = it; if (it !== pos[pos.length - 1] && pos3 === pos2) { pos3 = pos[2]; } else if (it === pos[pos.length - 1] && pos3 === pos2) { flag = true; break; } } else { flag = true; break; } } indices.push([pos1, pos2, pos3]); [arr[pos1], arr[pos2]] = [arr[pos2], arr[pos1]]; [arr[pos1], arr[pos3]] = [arr[pos3], arr[pos1]]; pos.splice(pos.indexOf(pos2), 1); } } if (arr[i] !== i) { i--; } } if (flag === true || indices.length > moves) { console.log("Not Possible"); } else { console.log(indices.length); } } // Driver Code let s = "adceb"; let arr = []; for (let i = 0; i < s.length; i++) { arr.push(s.charCodeAt(i) - 97); } sortString(arr, s.length, Math.floor(s.length / 2));
1
Time Complexity: O(n)
Space Complexity: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!