Given an array, arr[] of N elements, where each element is at most K away from its target position, the task is to devise an algorithm that sorts in O(N*log(K)) time.
Examples:
Input: arr[] = {10, 9, 8, 7, 4, 70, 60, 50}, K = 4
Output: 4 7 8 9 10 50 60 70
Explanation:
Follow the steps below to sort the array:
- Start with Gap = K(i.e. 4)
- 10 9 8 7 4 70 60 50, swap the elements at indices 0 and 4. Then the array modifies to {4, 9, 8, 7, 10, 70, 60, 50}.
4 9 8 7 10 70 60 50, Do not swap the elements at indices 1 and 5.
4 9 8 7 10 70 60 50, Do not swap the elements at indices 2 and 6.
4 9 8 7 10 70 60 50, Do not swap the elements at indices 3 and 7.- Gap = ceiling of 4/2 = 2
- 4 9 8 7 10 70 60 50, Do not swap the elements at indices 0 and 2.
4 9 8 7 10 70 60 50, swap the elements at indices 1 and 3. Then the array modifies to {4, 7, 8, 9, 10, 70, 60, 50}.
4 7 8 9 10 70 60 50, Do not swap the elements at indices 2 and 4.
4 7 8 9 10 70 60 50, Do not swap the elements at indices 3 and 5.
4 7 8 9 10 70 60 50, Do not swap the elements at indices 4 and 6.
4 7 8 9 10 70 60 50, swap the elements at indices 5 and 7. Then the array modifies to {4, 7, 8, 9, 10, 70, 60, 50}.
4 7 8 9 10 50 60 70- Gap = ceiling of 2/2 = 1
- 4 7 8 9 10 50 60 70, Do not swap the elements at indices 0 and 1.
4 7 8 9 10 50 60 70, Do not swap the elements at indices 1 and 2.
4 7 8 9 10 50 60 70, Do not swap the elements at indices 2 and 3.
4 7 8 9 10 50 60 70, Do not swap the elements at indices 3 and 4.
4 7 8 9 10 50 60 70, Do not swap the elements at indices 4 and 5.
4 7 8 9 10 50 60 70, Do not swap the elements at indices 5 and 6.
4 7 8 9 10 50 60 70, Do not swap the elements at indices 6 and 7.Input: arr[] = {6, 5, 3, 2, 8, 10, 9}, K = 3
Output: 2 3 5 6 8 9 10
Approach: The given problem Sort a nearly sorted (or K sorted) array is already solved. Here the idea is to use shell sorting to sort the array. The idea used here is similar to the merging step of the In-Place Merge Sort. Follow the steps below to solve the problem:
- Initialize a variable, say Gap with a value K to sort every Gapth element of every sublist.
- Iterate until Gap is greater than 0 and perform the following steps:
- Iterate over the range [0, N-Gap] using the variable i, and in each iteration, if arr[i] is greater than the arr[i+Gap], then swap the array elements.
- Update the Gap as Gap = ceil(Gap/2).
- Finally, after completing the above step print the elements of the array arr[].
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the nextGap int nextGap( double k) { if (k < 2) return 0; return ceil (k / 2); } // A utility function to print the array void printArray( int arr[], int n) { for ( int i = 0; i < n; i++) cout << arr[i] << " " ; } // Function to sort a K sorted array void kSort( int arr[], int K, int n) { // Iterate until gap is atleast // greater than 0 for ( int gap = K; gap > 0; gap = nextGap(gap)) { // Iterate over the range [0, N] for ( int i = 0; i + gap < n; i++) { // If arr[i] is greater // than arr[i+gap] if (arr[i] > arr[i + gap]) { // Swap arr[i] and // arr[i+gap] swap(arr[i], arr[i + gap]); } } } printArray(arr, n); } // Driver Code int main() { // Input int arr[] = { 10, 9, 8, 7, 4, 70, 60, 50 }; int K = 3; int n = sizeof (arr) / sizeof (arr[0]); // Function call kSort(arr, K, n); return 0; } // This code is contributed by lokesh potta. |
Java
// Java program for the above approach import java.util.Iterator; import java.util.PriorityQueue; class GFG { // Function to sort a K sorted array static void kSort( int [] arr, int K) { // Iterate until gap is atleast // greater than 0 for ( int gap = K; gap > 0 ; gap = nextGap(gap)) { // Iterate over the range [0, N] for ( int i = 0 ; i + gap < arr.length; i++) { // If arr[i] is greater // than arr[i+gap] if (arr[i] > arr[i + gap]) { // Swap arr[i] and // arr[i+gap] swap(arr, i, i + gap); } } } printArray(arr); } // Function to find the nextGap static int nextGap( double k) { if (k < 2 ) return 0 ; return ( int )Math.ceil(k / 2 ); } // Function to swap two elements // of the array arr[] static void swap( int [] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // A utility function to print the array private static void printArray( int [] arr) { for ( int i = 0 ; i < arr.length; i++) System.out.print(arr[i] + " " ); } // Driver Code public static void main(String[] args) { // Input int arr[] = { 10 , 9 , 8 , 7 , 4 , 70 , 60 , 50 }; int K = 3 ; // Function call kSort(arr, K); } } |
Python3
# Python3 program for the above approach import math # Function to find the nextGap def nextGap(k): if (k < 2 ): return 0 return math.ceil(k / 2 ) # A utility function to print array def printArray(arr, n): for i in range (n): print (arr[i], end = " " ) # Function to sort a K sorted array def kSort(arr, K, n): # Iterate until gap is atleast # greater than 0 gap = K while (gap > 0 ): # Iterate over the range [0, N] i = 0 while (i + gap < n): # If arr[i] is greater # than arr[i+gap] if (arr[i] > arr[i + gap]): # Swap arr[i] and # arr[i+gap] arr[i], arr[i + gap] = arr[i + gap], arr[i] i + = 1 gap = nextGap(gap) printArray(arr, n) # Driver Code # Input arr = [ 10 , 9 , 8 , 7 , 4 , 70 , 60 , 50 ] K = 3 n = len (arr) # Function call kSort(arr, K, n) # This code is contributed by target_2 |
C#
// C# program for the above approach using System; class GFG { // Function to sort a K sorted array static void kSort( int [] arr, int K) { // Iterate until gap is atleast // greater than 0 for ( int gap = K; gap > 0; gap = nextGap(gap)) { // Iterate over the range [0, N] for ( int i = 0; i + gap < arr.Length; i++) { // If arr[i] is greater // than arr[i+gap] if (arr[i] > arr[i + gap]) { // Swap arr[i] and // arr[i+gap] swap(arr, i, i + gap); } } } printArray(arr); } // Function to find the nextGap static int nextGap( double k) { if (k < 2) return 0; return ( int )Math.Ceiling(k / 2); } // Function to swap two elements // of the array arr[] static void swap( int [] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } // A utility function to print the array private static void printArray( int [] arr) { for ( int i = 0; i < arr.Length; i++) Console.Write(arr[i] + " " ); } // Driver Code public static void Main( string [] args) { // Input int []arr = { 10, 9, 8, 7, 4, 70, 60, 50 }; int K = 3; // Function call kSort(arr, K); } } // This code is contributed by ukasp. |
Javascript
<script> // Javascript program for the above approach // Function to find the nextGap function nextGap(k) { if (k < 2) return 0; return Math.ceil(k / 2); } // A utility function to print the array function printArray(arr, n) { for (let i = 0; i < n; i++) document.write(arr[i] + " " ); } // Function to sort a K sorted array function kSort(arr, K, n) { // Iterate until gap is atleast // greater than 0 for (let gap = K; gap > 0; gap = nextGap(gap)) { // Iterate over the range [0, N] for (let i = 0; i + gap < n; i++) { // If arr[i] is greater // than arr[i+gap] if (arr[i] > arr[i + gap]) { // Swap arr[i] and // arr[i+gap] let temp = arr[i]; arr[i] = arr[i + gap]; arr[i + gap] = temp; } } } printArray(arr, n); } // Driver Code // Input let arr = [ 10, 9, 8, 7, 4, 70, 60, 50 ]; let K = 3; let n = arr.length; // Function call kSort(arr, K, n); // This code is contributed by _saurabh_jaiswal </script> |
4 7 8 9 10 50 60 70
Time Complexity: O(N*log K)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!