Saturday, December 28, 2024
Google search engine
HomeData Modelling & AISort a Bitonic Array

Sort a Bitonic Array

Given a bitonic array arr[] the task is to sort the given bitonic array. 
 

A Bitonic Sequence is a sequence of numbers that is first strictly increasing then after a point strictly decreasing.

Examples: 
 

Input: arr[] = {5, 10, 15, 25, 20, 3, 2, 1} 
Output: 1 2 3 5 10 15 20 25
Input: arr[] = {5, 20, 30, 40, 36, 33, 25, 15, 10} 
Output: 5 10 15 20 25 30 33 36 40

Approach: 
 

  • The idea is to initialize a variable K to the highest power of 2 in size of the array such as to compare elements that are K distant apart.
  • Swap the elements if they are not in increasing order.
  • Reduce K by half and repeat the process until K becomes zero.

Below is the implementation of the above approach:
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to Sort a Bitonic array
// in constant space
void sortArr(int a[], int n)
{
    int i, k;
 
    // Initialize the value of k
    k = (int)log2(n);
    k = pow(2, k);
 
    // In each iteration compare elements
    // k distance apart and swap if
    // they are not in order
    while (k > 0) {
        for (i = 0; i + k < n; i++)
            if (a[i] > a[i + k])
                swap(a[i], a[i + k]);
 
        // k is reduced to half
        // after every iteration
        k = k / 2;
    }
 
    // Print the array elements
    for (i = 0; i < n; i++) {
        cout << a[i] << " ";
    }
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 5, 20, 30, 40, 36, 33, 25, 15, 10 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    sortArr(arr, n);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to Sort a Bitonic array
// in constant space
static void sortArr(int a[], int n)
{
    int i, k;
 
    // Initialize the value of k
    k = (int)(Math.log(n) / Math.log(2));
    k = (int) Math.pow(2, k);
 
    // In each iteration compare elements
    // k distance apart and swap if
    // they are not in order
    while (k > 0)
    {
        for(i = 0; i + k < n; i++)
            if (a[i] > a[i + k])
            {
                int tmp = a[i];
                a[i] = a[i + k];
                a[i + k] = tmp;
            }
 
        // k is reduced to half
        // after every iteration
        k = k / 2;
    }
 
    // Print the array elements
    for(i = 0; i < n; i++)
    {
        System.out.print(a[i] + " ");
    }
}
     
// Driver code
public static void main (String[] args)
{
     
    // Given array arr[]
    int arr[] = { 5, 20, 30, 40, 36,
                  33, 25, 15, 10 };
    int n = arr.length;
     
    // Function call
    sortArr(arr, n);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for the
# above approach
import math
 
# Function to sort bitonic
# array in constant space
def sortArr(a, n):
 
    # Initialize thevalue of k
    k = int(math.log(n, 2))
    k = int(pow(2, k))
 
    # In each iteration compare elements
    # k distance apart and swap it
    # they are not in order
    while(k > 0):
        i = 0
        while i + k < n:
            if a[i] > a[i + k]:
                a[i], a[i + k] = a[i + k], a[i]
            i = i + 1
             
        # k is reduced to half after
        # every iteration
        k = k // 2
     
    # Print the array elements    
    for i in range(n):
        print(a[i], end = " ")
 
# Driver code
 
# Given array
a = [ 5, 20, 30, 40, 36, 33, 25, 15, 10 ]
n = len(a)
 
# Function call
sortArr(a, n)
 
# This code is contributed by virusbuddah_


C#




// C# program for the above approach
using System;
 
class GFG{
     
// Function to Sort a Bitonic array
// in constant space
static void sortArr(int []a, int n)
{
    int i, k;
 
    // Initialize the value of k
    k = (int)(Math.Log(n) / Math.Log(2));
    k = (int) Math.Pow(2, k);
 
    // In each iteration compare elements
    // k distance apart and swap if
    // they are not in order
    while (k > 0)
    {
        for(i = 0; i + k < n; i++)
            if (a[i] > a[i + k])
            {
                int tmp = a[i];
                a[i] = a[i + k];
                a[i + k] = tmp;
            }
 
        // k is reduced to half
        // after every iteration
        k = k / 2;
    }
 
    // Print the array elements
    for(i = 0; i < n; i++)
    {
        Console.Write(a[i] + " ");
    }
}
     
// Driver code
public static void Main(String[] args)
{
     
    // Given array []arr
    int []arr = { 5, 20, 30, 40, 36,
                  33, 25, 15, 10 };
    int n = arr.Length;
     
    // Function call
    sortArr(arr, n);
}
}
 
// This code is contributed by amal kumar choubey


Javascript




<script>
 
// Java script program for the above approach
     
// Function to Sort a Bitonic array
// in constant space
function sortArr(a,n)
{
    let i, k;
 
    // Initialize the value of k
    k = parseInt(Math.log(n) / Math.log(2));
    k = parseInt( Math.pow(2, k));
 
    // In each iteration compare elements
    // k distance apart and swap if
    // they are not in order
    while (k > 0)
    {
        for(i = 0; i + k < n; i++)
            if (a[i] > a[i + k])
            {
                let tmp = a[i];
                a[i] = a[i + k];
                a[i + k] = tmp;
            }
 
        // k is reduced to half
        // after every iteration
        k = k / 2;
    }
 
    // Print the array elements
    for(i = 0; i < n; i++)
    {
        document.write(a[i] + " ");
    }
}
     
// Driver code
 
     
    // Given array arr[]
    let arr = [ 5, 20, 30, 40, 36,
                33, 25, 15, 10 ];
    let n = arr.length;
     
    // Function call
    sortArr(arr, n);
 
// This code is contributed by sravan kumar
</script>


Output

5 10 15 20 25 30 33 36 40 

Time Complexity: O(N*log N) 
Auxiliary Space: O(1)
 

Efficient Approach : Using Binary search and Merge function of Merge sort.

  1. Find peak element index using binary search in given array.
  2. Divide the array into two parts first from index 0 to peak and second from index peak+1 to N-1
    and traverse both the arrays in ascending order and do the following operations until any of the
    arrays is exhausted :
                  (i)  If element of first array is less than element of second array then store it into a tmp array
                       and increase the indexes of both the arrays (tmp and first).
                  (ii) Else store the element of second array into tmp array and increase the indexes of both
                       the arrays (tmp and second).
  3. Check both the arrays and the array which is not fully traversed, store the remaining elements into
    tmp array.
  4. Copy all the elements of tmp array back in original array.

 
Below is the implementation of the above approach :

C++




// C++ program for the above approach
#include<bits/stdc++.h>
using namespace std;
     
// Function to Sort a Bitonic array
void sortArr(vector<int>&arr,int n){
 
    // Auxiliary array to store the sorted elements
    vector<int>tmp(n, 0);
 
    // Index of peak element in the bitonic array
    int peak = -1;
    int low = 0;
    int high = n - 1;
    int k = 0;
 
    // Modified Binary search to find the index of peak element
    while (low <= high){
 
        int mid = (low + high) / 2;
 
        // Condition for checking element at index mid is peak element or not
        if (( mid == 0 || arr[mid - 1] < arr[mid] ) &&
            ( mid == n - 1 || arr[mid + 1] < arr[mid] )){
            peak = mid;
            break;
        }
             
        // If elements before mid element
        // are in increasing order it means
        // peak is present after the mid index
        if (arr[mid] < arr[mid + 1])
            low = mid + 1;
             
        // If elements after mid element
        // are in decreasing order it means
        // peak is present before the mid index
        else
            high = mid - 1;
    }
         
    // Merging both the sorted arrays present
    // before after the peak element
    low = 0;
    high = n - 1;
         
    // Loop until any of both arrays is exhausted
    while (low <= peak && high > peak){
             
        // Storing less value element in tmp array
        if (arr[low] < arr[high]){
            tmp[k++] = arr[low++];
        }
        else{
            tmp[k++] = arr[high--];
        }
    }
         
    // Storing remaining elements of array which is
    // present before peak element in tmp array
    while (low <= peak){
        tmp[k++] = arr[low++];
    }
         
    // Storing remaining elements of array which is
    // present after peak element in tmp array
    while (high > peak){
        tmp[k++] = arr[high++];
    }
         
    // Storing all elements of tmp array back in
    // original array
    for(int i = 0; i < n; i++)
        arr[i] = tmp[i];
}
         
// Driver code
     
// Given array arr[]
int main(){
 
vector<int>arr = { 5, 20, 30, 40, 36, 33, 25, 15, 10 };
int n = arr.size();
 
// Function call
sortArr(arr, n);
 
for(auto x : arr)
    cout<<x<<" ";
 
}
 
// This code is contributed by shinjanpatra


Java




// Java program for the above approach
import java.util.*;
 
public class GFG {
     
    // Function to Sort a Bitonic array
    static void sortArr(int arr[], int n)
    {
         
       // Auxiliary array to store the sorted elements
       int tmp[] = new int[n];
        
       // Index of peak element in the bitonic array
       int peak = -1, low = 0, high = n-1, k=0;
        
       // Modified Binary search to find the index of peak element
       while (low <= high){
            
           int mid = (low + high) / 2;
            
           // Condition for checking element at index mid is peak element or not
           if (( mid == 0 || arr[mid - 1] < arr[mid] )
                   && ( mid == n - 1 || arr[mid + 1] < arr[mid]
              ))
           {
               peak = mid;
               break;
           }
            
           // If elements before mid element
           // are in increasing order it means
           // peak is present after the mid index
           if (arr[mid] < arr[mid + 1]) low = mid + 1;
            
           // If elements after mid element
           // are in decreasing order it means
           // peak is present before the mid index
           else high = mid - 1;
       }
        
       // Merging both the sorted arrays present
       // before after the peak element
       low = 0;
       high = n - 1;
        
       // Loop until any of both arrays is exhausted
       while (low <= peak && high > peak){
            
           // Storing less value element in tmp array
           if (arr[low] < arr[high]) tmp[k++] = arr[low++];
           else tmp[k++] = arr[high--];
       }
        
       // Storing remaining elements of array which is
       // present before peak element in tmp array
       while (low <= peak) tmp[k++] = arr[low++];
        
       // Storing remaining elements of array which is
       // present after peak element in tmp array
       while (high > peak) tmp[k++] = arr[high--];
        
       // Storing all elements of tmp array back in
       // original array
       for (int i = 0; i < n; i++) arr[i] = tmp[i];
    }
         
    // Driver code
    public static void main(String[] args)
    {
         
        // Given array arr[]
        int arr[] = { 5, 20, 30, 40, 36, 33, 25, 15, 10 };
        int n = arr.length;
         
        // Function call
        sortArr(arr, n);
         
        for (int x : arr) System.out.print(x + " ");
    }
}


Python3




# Python program for the above approach
     
# Function to Sort a Bitonic array
def sortArr(arr, n):
 
    # Auxiliary array to store the sorted elements
    tmp = [0 for i in range(n)]
 
    # Index of peak element in the bitonic array
    peak, low, high, k = -1, 0, n - 1, 0
 
    # Modified Binary search to find the index of peak element
    while (low <= high):
 
        mid = (low + high) // 2
 
        # Condition for checking element at index mid is peak element or not
        if (( mid == 0 or arr[mid - 1] < arr[mid] ) and ( mid == n - 1 or arr[mid + 1] < arr[mid] )):
            peak = mid
            break
             
        # If elements before mid element
        # are in increasing order it means
        # peak is present after the mid index
        if (arr[mid] < arr[mid + 1]):
            low = mid + 1
             
        # If elements after mid element
        # are in decreasing order it means
        # peak is present before the mid index
        else:
            high = mid - 1
         
    # Merging both the sorted arrays present
    # before after the peak element
    low,high = 0,n - 1
         
    # Loop until any of both arrays is exhausted
    while (low <= peak and high > peak):
             
        # Storing less value element in tmp array
        if (arr[low] < arr[high]):
            tmp[k] = arr[low]
            k += 1
            low += 1
        else:
            tmp[k] = arr[high]
            k += 1
            high -= 1
         
    # Storing remaining elements of array which is
    # present before peak element in tmp array
    while (low <= peak):
        tmp[k] = arr[low]
        k += 1
        low += 1
         
    # Storing remaining elements of array which is
    # present after peak element in tmp array
    while (high > peak):
        tmp[k] = arr[high]
        k += 1
        high -= 1
         
    # Storing all elements of tmp array back in
    # original array
    for i in range(n):
        arr[i] = tmp[i]
         
# Driver code
     
# Given array arr[]
arr = [ 5, 20, 30, 40, 36, 33, 25, 15, 10 ]
n = len(arr)
 
# Function call
sortArr(arr, n)
 
for x in arr:
    print(x ,end = " ")
 
# This code is contributed by shinjanpatra


Javascript




<script>
 
// JavaScript program for the above approach
     
// Function to Sort a Bitonic array
function sortArr(arr, n){
 
    // Auxiliary array to store the sorted elements
    let tmp = new Array(n).fill(0)
 
    // Index of peak element in the bitonic array
    let peak = -1
    let low = 0
    let high = n - 1
    let k = 0
 
    // Modified Binary search to find the index of peak element
    while (low <= high){
 
        let mid = Math.floor((low + high) / 2)
 
        // Condition for checking element at index mid is peak element or not
        if (( mid == 0 || arr[mid - 1] < arr[mid] ) && ( mid == n - 1 || arr[mid + 1] < arr[mid] )){
            peak = mid
            break
        }
             
        // If elements before mid element
        // are in increasing order it means
        // peak is present after the mid index
        if (arr[mid] < arr[mid + 1])
            low = mid + 1
             
        // If elements after mid element
        // are in decreasing order it means
        // peak is present before the mid index
        else
            high = mid - 1
    }
         
    // Merging both the sorted arrays present
    // before after the peak element
    low = 0
    high = n - 1
         
    // Loop until any of both arrays is exhausted
    while (low <= peak && high > peak){
             
        // Storing less value element in tmp array
        if (arr[low] < arr[high]){
            tmp[k++] = arr[low++]
        }
        else{
            tmp[k++] = arr[high--]
        }
    }
         
    // Storing remaining elements of array which is
    // present before peak element in tmp array
    while (low <= peak){
        tmp[k++] = arr[low++]
    }
         
    // Storing remaining elements of array which is
    // present after peak element in tmp array
    while (high > peak){
        tmp[k++] = arr[high++]
    }
         
    // Storing all elements of tmp array back in
    // original array
    for(let i = 0; i < n; i++)
        arr[i] = tmp[i]
}
         
// Driver code
     
// Given array arr[]
let arr = [ 5, 20, 30, 40, 36, 33, 25, 15, 10 ]
let n = arr.length
 
// Function call
sortArr(arr, n)
 
for(let x of arr)
    document.write(x ," ")
 
// This code is contributed by shinjanpatra
 
</script>


C#




// C# program for the above approach
 
// Include namespace system
using System;
 
 
public class GFG
{
    // Function to Sort a Bitonic array
    public static void sortArr(int[] arr, int n)
    {
        // Auxiliary array to store the sorted elements
        int[] tmp = new int[n];
        // Index of peak element in the bitonic array
        var peak = -1;
        var low = 0;
        var high = n - 1;
        var k = 0;
        // Modified Binary search to find the index of peak element
        while (low <= high)
        {
            var mid = (int)((low + high) / 2);
            // Condition for checking element at index mid is peak element or not
            if ((mid == 0 || arr[mid - 1] < arr[mid]) && (mid == n - 1 || arr[mid + 1] < arr[mid]))
            {
                peak = mid;
                break;
            }
            // If elements before mid element
            // are in increasing order it means
            // peak is present after the mid index
            if (arr[mid] < arr[mid + 1])
            {
                low = mid + 1;
            }
            else
            {
                high = mid - 1;
            }
        }
        // Merging both the sorted arrays present
        // before after the peak element
        low = 0;
        high = n - 1;
        // Loop until any of both arrays is exhausted
        while (low <= peak && high > peak)
        {
            // Storing less value element in tmp array
            if (arr[low] < arr[high])
            {
                tmp[k++] = arr[low++];
            }
            else
            {
                tmp[k++] = arr[high--];
            }
        }
        // Storing remaining elements of array which is
        // present before peak element in tmp array
        while (low <= peak)
        {tmp[k++] = arr[low++];
        }
        // Storing remaining elements of array which is
        // present after peak element in tmp array
        while (high > peak)
        {tmp[k++] = arr[high--];
        }
        // Storing all elements of tmp array back in
        // original array
        for (int i = 0; i < n; i++)
        {
            arr[i] = tmp[i];
        }
    }
    // Driver code
    public static void Main(String[] args)
    {
        // Given array arr[]
        int[] arr = {5, 20, 30, 40, 36, 33, 25, 15, 10};
        var n = arr.Length;
        // Function call
        sortArr(arr, n);
        foreach (int x in arr)
        {            Console.Write(x.ToString() + " ");
        }
    }
}


Output

5 10 15 20 25 30 33 36 40 

Time Complexity : O(N)
Auxiliary Space : O(N) (can be done in O(1) also)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments