Monday, January 13, 2025
Google search engine
HomeData Modelling & AISmallest perfect Cube divisible by all elements of an array

Smallest perfect Cube divisible by all elements of an array

Given an array arr[], the task is to find the smallest perfect cube which is divisible by all the elements of the given array.

Examples: 

Input: arr[] = {20, 4, 128, 7} 
Output: 21952000

Input: arr[] = {10, 125, 14, 42, 100} 
Output: 9261000 

Naive Approach: Check all perfect cubes one by one starting from 1 and select the one which is divisible by all the elements of the array.

Efficient Approach: Find the least common multiple of all the elements of the array and store it in a variable lcm. Find all prime factor of the found LCM. 
Now for every prime factor fact which divides the lcm ‘x’ number of times where x % 3 != 0:  

  • If x % 3 = 2 then update lcm = lcm * fact.
  • If x % 3 = 1 then update lcm = lcm * fact2.

Print the updated LCM in the end.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define ll long long int
 
// Function to return the gcd of two numbers
ll gcd(ll a, ll b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
 
// Function to return the lcm of
// all the elements of the array
ll lcmOfArray(int arr[], int n)
{
    if (n < 1)
        return 0;
 
    ll lcm = arr[0];
 
    // To calculate lcm of two numbers
    // multiply them and divide the result
    // by gcd of both the numbers
    for (int i = 1; i < n; i++)
        lcm = (lcm * arr[i]) / gcd(lcm, arr[i]);
 
    // Return the LCM of the array elements
    return lcm;
}
 
// Function to return the smallest perfect cube
// divisible by all the elements of arr[]
int minPerfectCube(int arr[], int n)
{
    ll minPerfectCube;
 
    // LCM of all the elements of arr[]
    ll lcm = lcmOfArray(arr, n);
    minPerfectCube = (long long)lcm;
 
    int cnt = 0;
    while (lcm > 1 && lcm % 2 == 0) {
        cnt++;
        lcm /= 2;
    }
 
    // If 2 divides lcm cnt number of times
    if (cnt % 3 == 2)
        minPerfectCube *= 2;
    else if (cnt % 3 == 1)
        minPerfectCube *= 4;
 
    int i = 3;
 
    // Check all the numbers that divide lcm
    while (lcm > 1) {
        cnt = 0;
        while (lcm % i == 0) {
            cnt++;
            lcm /= i;
        }
 
        if (cnt % 3 == 1)
            minPerfectCube *= i * i;
        else if (cnt % 3 == 2)
            minPerfectCube *= i;
 
        i += 2;
    }
 
    // Return the answer
    return minPerfectCube;
}
 
// Driver code
int main()
{
    int arr[] = { 10, 125, 14, 42, 100 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << minPerfectCube(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to return the gcd of two numbers
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
 
// Function to return the lcm of
// all the elements of the array
static int lcmOfArray(int arr[], int n)
{
    if (n < 1)
        return 0;
 
    int lcm = arr[0];
 
    // To calculate lcm of two numbers
    // multiply them and divide the result
    // by gcd of both the numbers
    for (int i = 1; i < n; i++)
        lcm = (lcm * arr[i]) / gcd(lcm, arr[i]);
 
    // Return the LCM of the array elements
    return lcm;
}
 
// Function to return the smaintest perfect cube
// divisible by all the elements of arr[]
static int minPerfectCube(int arr[], int n)
{
    int minPerfectCube;
 
    // LCM of all the elements of arr[]
    int lcm = lcmOfArray(arr, n);
    minPerfectCube = lcm;
 
    int cnt = 0;
    while (lcm > 1 && lcm % 2 == 0)
    {
        cnt++;
        lcm /= 2;
    }
 
    // If 2 divides lcm cnt number of times
    if (cnt % 3 == 2)
        minPerfectCube *= 2;
    else if (cnt % 3 == 1)
        minPerfectCube *= 4;
 
    int i = 3;
 
    // Check all the numbers that divide lcm
    while (lcm > 1)
    {
        cnt = 0;
        while (lcm % i == 0)
        {
            cnt++;
            lcm /= i;
        }
 
        if (cnt % 3 == 1)
            minPerfectCube *= i * i;
        else if (cnt % 3 == 2)
            minPerfectCube *= i;
 
        i += 2;
    }
 
    // Return the answer
    return minPerfectCube;
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 10, 125, 14, 42, 100 };
    int n = arr.length;
    System.out.println(minPerfectCube(arr, n));
}
}
 
// This code is contributed by
// Surendra_Gangwar


Python3




# Python3 implementation of the approach
 
# Function to return the gcd of two numbers
def gcd(a, b) :
     
    if (b == 0) :
        return a
    else :
        return gcd(b, a % b)
 
# Function to return the lcm of
# all the elements of the array
def lcmOfArray(arr, n) :
     
    if (n < 1) :
        return 0
 
    lcm = arr[0]
 
    # To calculate lcm of two numbers
    # multiply them and divide the result
    # by gcd of both the numbers
    for i in range(n) :
        lcm = (lcm * arr[i]) // gcd(lcm, arr[i]);
 
    # Return the LCM of the array elements
    return lcm
 
# Function to return the smallest perfect cube
# divisible by all the elements of arr[]
def minPerfectCube(arr, n) :
     
    # LCM of all the elements of arr[]
    lcm = lcmOfArray(arr, n)
    minPerfectCube = lcm
 
    cnt = 0
    while (lcm > 1 and lcm % 2 == 0) :
        cnt += 1
        lcm //= 2
     
    # If 2 divides lcm cnt number of times
    if (cnt % 3 == 2) :
        minPerfectCube *= 2
         
    elif (cnt % 3 == 1) :
        minPerfectCube *= 4
 
    i = 3
     
    # Check all the numbers that divide lcm
    while (lcm > 1) :
        cnt = 0
         
        while (lcm % i == 0) :
            cnt += 1
            lcm //= i
         
        if (cnt % 3 == 1) :
            minPerfectCube *= i * i
             
        elif (cnt % 3 == 2) :
            minPerfectCube *= i
 
        i += 2
 
    # Return the answer
    return minPerfectCube
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 10, 125, 14, 42, 100 ]
     
    n = len(arr)
    print(minPerfectCube(arr, n))
     
# This code is contributed by Ryuga


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the gcd of two numbers
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
 
// Function to return the lcm of
// all the elements of the array
static int lcmOfArray(int []arr, int n)
{
    if (n < 1)
        return 0;
 
    int lcm = arr[0];
 
    // To calculate lcm of two numbers
    // multiply them and divide the result
    // by gcd of both the numbers
    for (int i = 1; i < n; i++)
        lcm = (lcm * arr[i]) / gcd(lcm, arr[i]);
 
    // Return the LCM of the array elements
    return lcm;
}
 
// Function to return the smaintest perfect cube
// divisible by all the elements of arr[]
static int minPerfectCube(int []arr, int n)
{
    int minPerfectCube;
 
    // LCM of all the elements of arr[]
    int lcm = lcmOfArray(arr, n);
    minPerfectCube = lcm;
 
    int cnt = 0;
    while (lcm > 1 && lcm % 2 == 0)
    {
        cnt++;
        lcm /= 2;
    }
 
    // If 2 divides lcm cnt number of times
    if (cnt % 3 == 2)
        minPerfectCube *= 2;
    else if (cnt % 3 == 1)
        minPerfectCube *= 4;
 
    int i = 3;
 
    // Check all the numbers that divide lcm
    while (lcm > 1)
    {
        cnt = 0;
        while (lcm % i == 0)
        {
            cnt++;
            lcm /= i;
        }
 
        if (cnt % 3 == 1)
            minPerfectCube *= i * i;
        else if (cnt % 3 == 2)
            minPerfectCube *= i;
 
        i += 2;
    }
 
    // Return the answer
    return minPerfectCube;
}
 
// Driver code
public static void Main()
{
    int []arr = { 10, 125, 14, 42, 100 };
    int n = arr.Length;
    Console.WriteLine(minPerfectCube(arr, n));
}
}
 
// This code is contributed by chandan_jnu


PHP




<?php
// PHP implementation of the approach
 
// Function to return the gcd of two numbers
function gcd($a, $b)
{
    if ($b == 0)
        return $a;
    else
        return gcd($b, $a % $b);
}
 
// Function to return the lcm of
// all the elements of the array
function lcmOfArray(&$arr, $n)
{
    if ($n < 1)
        return 0;
 
    $lcm = $arr[0];
 
    // To calculate lcm of two numbers
    // multiply them and divide the result
    // by gcd of both the numbers
    for ($i = 1; $i < $n; $i++)
        $lcm = ($lcm * $arr[$i]) /
            gcd($lcm, $arr[$i]);
 
    // Return the LCM of the array elements
    return $lcm;
}
 
// Function to return the smallest perfect cube
// divisible by all the elements of arr[]
function minPerfectCube(&$arr, $n)
{
     
    // LCM of all the elements of arr[]
    $lcm = lcmOfArray($arr, $n);
    $minPerfectCube = $lcm;
 
    $cnt = 0;
    while ($lcm > 1 && $lcm % 2 == 0)
    {
        $cnt++;
        $lcm /= 2;
    }
 
    // If 2 divides lcm cnt number of times
    if ($cnt % 3 == 2)
        $minPerfectCube *= 2;
    else if ($cnt % 3 == 1)
        $minPerfectCube *= 4;
 
    $i = 3;
 
    // Check all the numbers that divide lcm
    while ($lcm > 1)
    {
        $cnt = 0;
        while ($lcm % $i == 0)
        {
            $cnt++;
            $lcm /= $i;
        }
 
        if ($cnt % 3 == 1)
            $minPerfectCube *= $i * $i;
        else if ($cnt % 3 == 2)
            $minPerfectCube *= $i;
 
        $i += 2;
    }
 
    // Return the answer
    return $minPerfectCube;
}
 
// Driver code
$arr = array(10, 125, 14, 42, 100 );
$n = sizeof($arr);
echo(minPerfectCube($arr, $n));
 
// This code is contributed by Shivi_Aggarwal
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the gcd of two numbers
function gcd(a, b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
 
// Function to return the lcm of
// all the elements of the array
function lcmOfArray(arr, n)
{
    if (n < 1)
        return 0;
 
    let lcm = arr[0];
 
    // To calculate lcm of two numbers
    // multiply them and divide the result
    // by gcd of both the numbers
    for (let i = 1; i < n; i++)
        lcm = parseInt((lcm * arr[i]) / gcd(lcm, arr[i]));
 
    // Return the LCM of the array elements
    return lcm;
}
 
// Function to return the smallest perfect cube
// divisible by all the elements of arr[]
function minPerfectCube(arr, n)
{
    let minPerfectCube;
 
    // LCM of all the elements of arr[]
    let lcm = lcmOfArray(arr, n);
    minPerfectCube = lcm;
 
    let cnt = 0;
    while (lcm > 1 && lcm % 2 == 0) {
        cnt++;
        lcm = parseInt(lcm/2);
    }
 
    // If 2 divides lcm cnt number of times
    if (cnt % 3 == 2)
        minPerfectCube *= 2;
    else if (cnt % 3 == 1)
        minPerfectCube *= 4;
 
    let i = 3;
 
    // Check all the numbers that divide lcm
    while (lcm > 1) {
        cnt = 0;
        while (lcm % i == 0) {
            cnt++;
            lcm = parseInt(lcm/i);
        }
 
        if (cnt % 3 == 1)
            minPerfectCube *= i * i;
        else if (cnt % 3 == 2)
            minPerfectCube *= i;
 
        i += 2;
    }
 
    // Return the answer
    return minPerfectCube;
}
 
// Driver code
let arr = [ 10, 125, 14, 42, 100 ];
let n = arr.length;
document.write(minPerfectCube(arr, n));
 
</script>


Output

9261000

Complexity Analysis:

  • Time Complexity: O(n * log(arr[i])
  • Auxiliary Space: O(1), since no extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments