Given an array arr[], the task is to find the smallest perfect cube which is divisible by all the elements of the given array.
Examples:
Input: arr[] = {20, 4, 128, 7}
Output: 21952000Input: arr[] = {10, 125, 14, 42, 100}
Output: 9261000
Naive Approach: Check all perfect cubes one by one starting from 1 and select the one which is divisible by all the elements of the array.
Efficient Approach: Find the least common multiple of all the elements of the array and store it in a variable lcm. Find all prime factor of the found LCM.
Now for every prime factor fact which divides the lcm ‘x’ number of times where x % 3 != 0:
- If x % 3 = 2 then update lcm = lcm * fact.
- If x % 3 = 1 then update lcm = lcm * fact2.
Print the updated LCM in the end.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;#define ll long long int// Function to return the gcd of two numbersll gcd(ll a, ll b){ if (b == 0) return a; else return gcd(b, a % b);}// Function to return the lcm of// all the elements of the arrayll lcmOfArray(int arr[], int n){ if (n < 1) return 0; ll lcm = arr[0]; // To calculate lcm of two numbers // multiply them and divide the result // by gcd of both the numbers for (int i = 1; i < n; i++) lcm = (lcm * arr[i]) / gcd(lcm, arr[i]); // Return the LCM of the array elements return lcm;}// Function to return the smallest perfect cube// divisible by all the elements of arr[]int minPerfectCube(int arr[], int n){ ll minPerfectCube; // LCM of all the elements of arr[] ll lcm = lcmOfArray(arr, n); minPerfectCube = (long long)lcm; int cnt = 0; while (lcm > 1 && lcm % 2 == 0) { cnt++; lcm /= 2; } // If 2 divides lcm cnt number of times if (cnt % 3 == 2) minPerfectCube *= 2; else if (cnt % 3 == 1) minPerfectCube *= 4; int i = 3; // Check all the numbers that divide lcm while (lcm > 1) { cnt = 0; while (lcm % i == 0) { cnt++; lcm /= i; } if (cnt % 3 == 1) minPerfectCube *= i * i; else if (cnt % 3 == 2) minPerfectCube *= i; i += 2; } // Return the answer return minPerfectCube;}// Driver codeint main(){ int arr[] = { 10, 125, 14, 42, 100 }; int n = sizeof(arr) / sizeof(arr[0]); cout << minPerfectCube(arr, n); return 0;} |
Java
// Java implementation of the approachimport java.util.*;class GFG{// Function to return the gcd of two numbersstatic int gcd(int a, int b){ if (b == 0) return a; else return gcd(b, a % b);}// Function to return the lcm of// all the elements of the arraystatic int lcmOfArray(int arr[], int n){ if (n < 1) return 0; int lcm = arr[0]; // To calculate lcm of two numbers // multiply them and divide the result // by gcd of both the numbers for (int i = 1; i < n; i++) lcm = (lcm * arr[i]) / gcd(lcm, arr[i]); // Return the LCM of the array elements return lcm;}// Function to return the smaintest perfect cube// divisible by all the elements of arr[]static int minPerfectCube(int arr[], int n){ int minPerfectCube; // LCM of all the elements of arr[] int lcm = lcmOfArray(arr, n); minPerfectCube = lcm; int cnt = 0; while (lcm > 1 && lcm % 2 == 0) { cnt++; lcm /= 2; } // If 2 divides lcm cnt number of times if (cnt % 3 == 2) minPerfectCube *= 2; else if (cnt % 3 == 1) minPerfectCube *= 4; int i = 3; // Check all the numbers that divide lcm while (lcm > 1) { cnt = 0; while (lcm % i == 0) { cnt++; lcm /= i; } if (cnt % 3 == 1) minPerfectCube *= i * i; else if (cnt % 3 == 2) minPerfectCube *= i; i += 2; } // Return the answer return minPerfectCube;}// Driver codepublic static void main(String args[]){ int arr[] = { 10, 125, 14, 42, 100 }; int n = arr.length; System.out.println(minPerfectCube(arr, n));}}// This code is contributed by// Surendra_Gangwar |
Python3
# Python3 implementation of the approach # Function to return the gcd of two numbers def gcd(a, b) : if (b == 0) : return a else : return gcd(b, a % b)# Function to return the lcm of # all the elements of the array def lcmOfArray(arr, n) : if (n < 1) : return 0 lcm = arr[0] # To calculate lcm of two numbers # multiply them and divide the result # by gcd of both the numbers for i in range(n) : lcm = (lcm * arr[i]) // gcd(lcm, arr[i]); # Return the LCM of the array elements return lcm# Function to return the smallest perfect cube # divisible by all the elements of arr[] def minPerfectCube(arr, n) : # LCM of all the elements of arr[] lcm = lcmOfArray(arr, n) minPerfectCube = lcm cnt = 0 while (lcm > 1 and lcm % 2 == 0) : cnt += 1 lcm //= 2 # If 2 divides lcm cnt number of times if (cnt % 3 == 2) : minPerfectCube *= 2 elif (cnt % 3 == 1) : minPerfectCube *= 4 i = 3 # Check all the numbers that divide lcm while (lcm > 1) : cnt = 0 while (lcm % i == 0) : cnt += 1 lcm //= i if (cnt % 3 == 1) : minPerfectCube *= i * i elif (cnt % 3 == 2) : minPerfectCube *= i i += 2 # Return the answer return minPerfectCube # Driver code if __name__ == "__main__" : arr = [ 10, 125, 14, 42, 100 ] n = len(arr) print(minPerfectCube(arr, n)) # This code is contributed by Ryuga |
C#
// C# implementation of the approachusing System;class GFG{// Function to return the gcd of two numbersstatic int gcd(int a, int b){ if (b == 0) return a; else return gcd(b, a % b);}// Function to return the lcm of// all the elements of the arraystatic int lcmOfArray(int []arr, int n){ if (n < 1) return 0; int lcm = arr[0]; // To calculate lcm of two numbers // multiply them and divide the result // by gcd of both the numbers for (int i = 1; i < n; i++) lcm = (lcm * arr[i]) / gcd(lcm, arr[i]); // Return the LCM of the array elements return lcm;}// Function to return the smaintest perfect cube// divisible by all the elements of arr[]static int minPerfectCube(int []arr, int n){ int minPerfectCube; // LCM of all the elements of arr[] int lcm = lcmOfArray(arr, n); minPerfectCube = lcm; int cnt = 0; while (lcm > 1 && lcm % 2 == 0) { cnt++; lcm /= 2; } // If 2 divides lcm cnt number of times if (cnt % 3 == 2) minPerfectCube *= 2; else if (cnt % 3 == 1) minPerfectCube *= 4; int i = 3; // Check all the numbers that divide lcm while (lcm > 1) { cnt = 0; while (lcm % i == 0) { cnt++; lcm /= i; } if (cnt % 3 == 1) minPerfectCube *= i * i; else if (cnt % 3 == 2) minPerfectCube *= i; i += 2; } // Return the answer return minPerfectCube;}// Driver codepublic static void Main(){ int []arr = { 10, 125, 14, 42, 100 }; int n = arr.Length; Console.WriteLine(minPerfectCube(arr, n));}}// This code is contributed by chandan_jnu |
PHP
<?php// PHP implementation of the approach// Function to return the gcd of two numbersfunction gcd($a, $b){ if ($b == 0) return $a; else return gcd($b, $a % $b);}// Function to return the lcm of// all the elements of the arrayfunction lcmOfArray(&$arr, $n){ if ($n < 1) return 0; $lcm = $arr[0]; // To calculate lcm of two numbers // multiply them and divide the result // by gcd of both the numbers for ($i = 1; $i < $n; $i++) $lcm = ($lcm * $arr[$i]) / gcd($lcm, $arr[$i]); // Return the LCM of the array elements return $lcm;}// Function to return the smallest perfect cube// divisible by all the elements of arr[]function minPerfectCube(&$arr, $n){ // LCM of all the elements of arr[] $lcm = lcmOfArray($arr, $n); $minPerfectCube = $lcm; $cnt = 0; while ($lcm > 1 && $lcm % 2 == 0) { $cnt++; $lcm /= 2; } // If 2 divides lcm cnt number of times if ($cnt % 3 == 2) $minPerfectCube *= 2; else if ($cnt % 3 == 1) $minPerfectCube *= 4; $i = 3; // Check all the numbers that divide lcm while ($lcm > 1) { $cnt = 0; while ($lcm % $i == 0) { $cnt++; $lcm /= $i; } if ($cnt % 3 == 1) $minPerfectCube *= $i * $i; else if ($cnt % 3 == 2) $minPerfectCube *= $i; $i += 2; } // Return the answer return $minPerfectCube;}// Driver code$arr = array(10, 125, 14, 42, 100 );$n = sizeof($arr);echo(minPerfectCube($arr, $n));// This code is contributed by Shivi_Aggarwal?> |
Javascript
<script>// Javascript implementation of the approach// Function to return the gcd of two numbersfunction gcd(a, b){ if (b == 0) return a; else return gcd(b, a % b);}// Function to return the lcm of// all the elements of the arrayfunction lcmOfArray(arr, n){ if (n < 1) return 0; let lcm = arr[0]; // To calculate lcm of two numbers // multiply them and divide the result // by gcd of both the numbers for (let i = 1; i < n; i++) lcm = parseInt((lcm * arr[i]) / gcd(lcm, arr[i])); // Return the LCM of the array elements return lcm;}// Function to return the smallest perfect cube// divisible by all the elements of arr[]function minPerfectCube(arr, n){ let minPerfectCube; // LCM of all the elements of arr[] let lcm = lcmOfArray(arr, n); minPerfectCube = lcm; let cnt = 0; while (lcm > 1 && lcm % 2 == 0) { cnt++; lcm = parseInt(lcm/2); } // If 2 divides lcm cnt number of times if (cnt % 3 == 2) minPerfectCube *= 2; else if (cnt % 3 == 1) minPerfectCube *= 4; let i = 3; // Check all the numbers that divide lcm while (lcm > 1) { cnt = 0; while (lcm % i == 0) { cnt++; lcm = parseInt(lcm/i); } if (cnt % 3 == 1) minPerfectCube *= i * i; else if (cnt % 3 == 2) minPerfectCube *= i; i += 2; } // Return the answer return minPerfectCube;}// Driver codelet arr = [ 10, 125, 14, 42, 100 ];let n = arr.length;document.write(minPerfectCube(arr, n));</script> |
9261000
Complexity Analysis:
- Time Complexity: O(n * log(arr[i])
- Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
