Thursday, January 9, 2025
Google search engine
HomeData Modelling & AISmallest indexed array element required to be flipped to make sum of...

Smallest indexed array element required to be flipped to make sum of array equal to 0

Given an array arr[] of size N, the task is to find the smallest indexed array element whose sign needs to be flipped such that the sum of the given array becomes 0. If it is not possible to make the sum of the array equal to 0, then print -1.

Examples:

Input: arr[] = {1, 3, -5, 3, 4} 
Output:
Explanation: 
Flipping the sign of arr[1] modifies arr[] to {1, -3, -5, 3, 4} 
Since the sum of array modifies to 0, the required output is 1.

Input: arr[] = {1, 2, 4} 
Output: -1

Naive Approach: The simplest approach is to solve this problem is to traverse the array and for each array element, flip the sign of the array element and check if the sum of the array changes to 0 or not. If found to be true, then print the index of the current element.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the smallest indexed
// array element required to be flipped to
// make sum of the given array equal to 0
int smallestIndexArrayElementsFlip(
    int arr[], int N)
{
 
    // Stores the required index
    int pos = -1;
 
    // Traverse the given array
    for (int i = 0; i < N; i++) {
 
        // Flip the sign of current element
        arr[i] *= -1;
 
        // Stores the sum of array elements
        int sum = 0;
 
        // Find the sum of the array
        for (int j = 0; j < N; j++) {
 
            // Update sum
            sum += arr[j];
        }
 
        // If sum is equal to 0
        if (sum == 0) {
 
            // Update pos
            pos = i;
            break;
        }
 
        // Reset the current element
        // to its original value
        else {
 
            // Reset the value of arr[i]
            arr[i] *= -1;
        }
    }
 
    return pos;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 3, -5, 3, 4 };
    int N = sizeof(arr)
            / sizeof(arr[0]);
    cout << smallestIndexArrayElementsFlip(
        arr, N);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.io.*;
class GFG {
     
    // Function to find the smallest indexed
    // array element required to be flipped to
    // make sum of the given array equal to 0
    static int smallestIndexArrayElementsFlip(int arr[], int N)
    {
     
        // Stores the required index
        int pos = -1;
     
        // Traverse the given array
        for (int i = 0; i < N; i++)
        {
     
            // Flip the sign of current element
            arr[i] *= -1;
     
            // Stores the sum of array elements
            int sum = 0;
     
            // Find the sum of the array
            for (int j = 0; j < N; j++)
            {
     
                // Update sum
                sum += arr[j];
            }
     
            // If sum is equal to 0
            if (sum == 0) {
     
                // Update pos
                pos = i;
                break;
            }
     
            // Reset the current element
            // to its original value
            else {
     
                // Reset the value of arr[i]
                arr[i] *= -1;
            }
        }
     
        return pos;
    }
     
    // Driver Code
    public static void main (String[] args)
    {
        int arr[] = { 1, 3, -5, 3, 4 };
        int N = arr.length;               
        System.out.println(smallestIndexArrayElementsFlip(arr, N));
    }
}
 
// This code is contributed by AnkThon


Python3




# Python3 program to implement
# the above approach
 
# Function to find the smallest indexed
# array element required to be flipped to
# make sum of the given array equal to 0
def smallestIndexArrayElementsFlip(arr, N):
     
    # Stores the required index
    pos = -1
 
    # Traverse the given array
    for i in range(N):
         
        # Flip the sign of current element
        arr[i] *= -1
 
        # Stores the sum of array elements
        sum = 0
 
        # Find the sum of the array
        for j in range(N):
             
            # Update sum
            sum += arr[j]
 
        # If sum is equal to 0
        if (sum == 0):
             
            # Update pos
            pos = i
            break
 
        # Reset the current element
        # to its original value
        else:
             
            # Reset the value of arr[i]
            arr[i] *= -1
 
    return pos
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 1, 3, -5, 3, 4 ]
    N = len(arr)
     
    print(smallestIndexArrayElementsFlip(arr, N))
     
# This code is contributed by mohit kumar 29


C#




// C# program to implement
// the above approach
using System;
class GFG
{
     
    // Function to find the smallest indexed
    // array element required to be flipped to
    // make sum of the given array equal to 0
    static int smallestIndexArrayElementsFlip(int []arr, int N)
    {
     
        // Stores the required index
        int pos = -1;
     
        // Traverse the given array
        for (int i = 0; i < N; i++)
        {
     
            // Flip the sign of current element
            arr[i] *= -1;
     
            // Stores the sum of array elements
            int sum = 0;
     
            // Find the sum of the array
            for (int j = 0; j < N; j++)
            {
     
                // Update sum
                sum += arr[j];
            }
     
            // If sum is equal to 0
            if (sum == 0)
            {
     
                // Update pos
                pos = i;
                break;
            }
     
            // Reset the current element
            // to its original value
            else
            {
     
                // Reset the value of arr[i]
                arr[i] *= -1;
            }
        }   
        return pos;
    }
     
    // Driver Code
    public static void Main(String[] args)
    {
        int []arr = { 1, 3, -5, 3, 4 };
        int N = arr.Length;               
        Console.WriteLine(smallestIndexArrayElementsFlip(arr, N));
    }
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to find the smallest indexed
// array element required to be flipped to
// make sum of the given array equal to 0
function smallestIndexArrayElementsFlip(arr, N)
{
 
    // Stores the required index
    var pos = -1;
 
    var i,j;
    // Traverse the given array
    for (i = 0; i < N; i++) {
 
        // Flip the sign of current element
        arr[i] *= -1;
 
        // Stores the sum of array elements
        var sum = 0;
 
        // Find the sum of the array
        for (j = 0; j < N; j++) {
 
            // Update sum
            sum += arr[j];
        }
 
        // If sum is equal to 0
        if (sum == 0) {
 
            // Update pos
            pos = i;
            break;
        }
 
        // Reset the current element
        // to its original value
        else {
 
            // Reset the value of arr[i]
            arr[i] *= -1;
        }
    }
 
    return pos;
}
 
// Driver Code
 
    var arr = [1, 3, -5, 3, 4];
    var N = arr.length;
    document.write(smallestIndexArrayElementsFlip(arr, N));
 
</script>


Output: 

1

 

Time Complexity: O(N2) 
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is based on the following observations:

Let the sum of the given array be ArrSum 
Sum of the array after flipping the sign of any array element UpdatedSum = ArrSum – 2 * arr[i] 
If UpdatedSum = 0, then arr[i] must be ArrSum / 2
 

Follow the steps below to solve the problem:

  • Initialize a variable, say ArrSum, to store the sum of the given array.
  • Traverse the array and for each array element, check if the value of (2 * arr[i] == ArrSum) is true or not. If found to be true, then print the index of the current element.
  • Otherwise, print -1.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the smallest indexed
// array element required to be flipped to
// make sum of the given array equal to 0
int smallestIndexArrayElementsFlip(
    int arr[], int N)
{
 
    // Stores the required index
    int pos = -1;
 
    // Stores the sum of the array
    int ArrSum = 0;
 
    // Traverse the given array
    for (int i = 0; i < N; i++) {
 
        // Update ArrSum
        ArrSum += arr[i];
    }
 
    // Traverse the given array
    for (int i = 0; i < N; i++) {
 
        // If sum of array elements double
        // the value of the current element
        if (2 * arr[i] == ArrSum) {
 
            // Update pos
            pos = i;
            break;
        }
    }
 
    return pos;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 3, -5, 3, 4 };
    int N = sizeof(arr)
            / sizeof(arr[0]);
 
    cout << smallestIndexArrayElementsFlip(
        arr, N);
 
    return 0;
}


Java




// Java program for above approach
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
 
  // Function to find the smallest indexed
  // array element required to be flipped to
  // make sum of the given array equal to 0
  static int smallestIndexArrayElementsFlip(
    int arr[], int N)
  {
 
    // Stores the required index
    int pos = -1;
 
    // Stores the sum of the array
    int ArrSum = 0;
 
    // Traverse the given array
    for (int i = 0; i < N; i++)
    {
 
      // Update ArrSum
      ArrSum += arr[i];
    }
 
    // Traverse the given array
    for (int i = 0; i < N; i++)
    {
 
      // If sum of array elements double
      // the value of the current element
      if (2 * arr[i] == ArrSum)
      {
 
        // Update pos
        pos = i;
        break;
      }
    }
    return pos;
  }
   
  // Driver function
  public static void main (String[] args)
  {
    int arr[] = { 1, 3, -5, 3, 4 };
    int N = arr.length;
 
    System.out.println(smallestIndexArrayElementsFlip(
      arr, N));
  }
}
 
// This code is contributed by offbeat


Python3




# Python program to implement
# the above approach
 
# Function to find the smallest indexed
# array element required to be flipped to
# make sum of the given array equal to 0
def smallestIndexArrayElementsFlip(arr, N):
 
    # Stores the required index
    pos = -1
 
    # Stores the sum of the array
    ArrSum = 0
 
    # Traverse the given array
    for i in range(N):
 
        # Update ArrSum
        ArrSum += arr[i]
 
    # Traverse the given array
    for i in range(N):
 
        # If sum of array elements double
        # the value of the current element
        if (2 * arr[i] == ArrSum):
 
            # Update pos
            pos = i
            break
    return pos
 
# Driver Code
arr = [1, 3, -5, 3, 4]
N = len(arr)
print(smallestIndexArrayElementsFlip(
    arr, N))
 
# This code is contributed by Dharanendra L V


C#




// C# program for above approach
using System;
 
class GFG {
 
    // Function to find the smallest indexed
    // array element required to be flipped to
    // make sum of the given array equal to 0
    static int smallestIndexArrayElementsFlip(int[] arr,
                                              int N)
    {
 
        // Stores the required index
        int pos = -1;
 
        // Stores the sum of the array
        int ArrSum = 0;
 
        // Traverse the given array
        for (int i = 0; i < N; i++) {
 
            // Update ArrSum
            ArrSum += arr[i];
        }
 
        // Traverse the given array
        for (int i = 0; i < N; i++) {
 
            // If sum of array elements double
            // the value of the current element
            if (2 * arr[i] == ArrSum) {
 
                // Update pos
                pos = i;
                break;
            }
        }
        return pos;
    }
 
    // Driver function
    static public void Main()
    {
 
        int[] arr = new int[] { 1, 3, -5, 3, 4 };
        int N = arr.Length;
 
        Console.WriteLine(
            smallestIndexArrayElementsFlip(arr, N));
    }
}
 
// This code is contributed by Dharanendra L V


Javascript




<script>
 
// javascript program for the above approach
 
  // Function to find the smallest indexed
  // array element required to be flipped to
  // make sum of the given array equal to 0
  function smallestIndexArrayElementsFlip(
    arr, N)
  {
  
    // Stores the required index
    let pos = -1;
  
    // Stores the sum of the array
    let ArrSum = 0;
  
    // Traverse the given array
    for (let i = 0; i < N; i++)
    {
  
      // Update ArrSum
      ArrSum += arr[i];
    }
  
    // Traverse the given array
    for (let i = 0; i < N; i++)
    {
  
      // If sum of array elements double
      // the value of the current element
      if (2 * arr[i] == ArrSum)
      {
  
        // Update pos
        pos = i;
        break;
      }
    }
    return pos;
  }
   
// Driver Code
     
    let arr = [ 1, 3, -5, 3, 4 ];
    let N = arr.length;
  
    document.write(smallestIndexArrayElementsFlip(
      arr, N));
  
</script>
 
 
</script>


Output: 

1

 

Time Complexity: O(N) 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
03 May, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments