Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AISmallest element with K set bits such that sum of Bitwise AND...

Smallest element with K set bits such that sum of Bitwise AND of each array element with K is maximum

Given an array arr[] consisting of N integers and integer K, the task is to find the smallest integer X with exactly K set bits such that the sum of Bitwise AND of X with every array element arr[i] is maximum.

Examples:

Input: arr[] = {3, 4, 5, 1}, K = 1
Output: 4
Explanation: Consider the value of X as 4. Then, the sum of Bitwise AND of X and array elements = 4 & 3 + 4 & 4 + 4 & 5 + 4 & 1 = 0 + 4 + 4 + 0 = 8, which is maximum.

Input: arr[] = {1, 3, 4, 5, 2, 5}, K = 2
Output: 5

 

Approach: The given problem can be solved by using the Greedy Approach. Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Comparator function to sort the
// vector of pairs
bool comp(pair<int, int>& a,
          pair<int, int>& b)
{
    // If the second is not the same
    // then sort in decreasing order
    if (a.second != b.second)
        return a.second > b.second;
 
    // Otherwise
    return a.first < b.first;
}
 
// Function to find the value of X
// such that Bitwise AND of all array
// elements with X is maximum
int maximizeSum(int arr[], int n, int k)
{
    // Stores the count of set bit at
    // each position
    vector<int> cnt(30, 0);
 
    // Stores the resultant value of X
    int X = 0;
 
    // Calculate the count of set bits
    // at each position
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < 30; j++) {
 
            // If the jth bit is set
            if (arr[i] & (1 << j))
                cnt[j]++;
        }
    }
 
    // Stores the contribution
    // of each set bit
    vector<pair<int, int> > v;
 
    // Store all bit and amount of
    // contribution
    for (int i = 0; i < 30; i++) {
 
        // Find the total contribution
        int gain = cnt[i] * (1 << i);
        v.push_back({ i, gain });
    }
 
    // Sort V[] in decreasing
    // order of second parameter
    sort(v.begin(), v.end(), comp);
 
    // Choose exactly K set bits
    for (int i = 0; i < k; i++) {
        X |= (1 << v[i].first);
    }
 
    // Print the answer
    cout << X;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 4, 5, 1 };
    int K = 1;
    int N = sizeof(arr) / sizeof(arr[0]);
    maximizeSum(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Function to find the value of X
// such that Bitwise AND of all array
// elements with X is maximum
static void maximizeSum(int arr[], int n, int k)
{
     
    // Stores the count of set bit at
    // each position
    int cnt[] = new int[30];
 
    // Stores the resultant value of X
    int X = 0;
 
    // Calculate the count of set bits
    // at each position
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < 30; j++)
        {
             
            // If the jth bit is set
            if ((arr[i] & (1 << j)) != 0)
                cnt[j]++;
        }
    }
 
    // Stores the contribution
    // of each set bit
    ArrayList<int[]> v = new ArrayList<>();
 
    // Store all bit and amount of
    // contribution
    for(int i = 0; i < 30; i++)
    {
         
        // Find the total contribution
        int gain = cnt[i] * (1 << i);
        v.add(new int[] { i, gain });
    }
 
    // Sort V[] in decreasing
    // order of second parameter
    Collections.sort(v, (a, b) -> {
         
        // If the second is not the same
        // then sort in decreasing order
        if (a[1] != b[1])
            return b[1] - a[1];
 
        // Otherwise
        return a[0] - b[0];
    });
 
    // Choose exactly K set bits
    for(int i = 0; i < k; i++)
    {
        X |= (1 << v.get(i)[0]);
    }
 
    // Print the answer
    System.out.println(X);
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 3, 4, 5, 1 };
    int K = 1;
    int N = arr.length;
     
    maximizeSum(arr, N, K);
}
}
 
// This code is contributed by Kingash


Python3




# Python3 program for the above approach
 
# Function to find the value of X
# such that Bitwise AND of all array
# elements with X is maximum
def maximize_sum(arr, n, k):
    # Stores the count of set bit at
    # each position
    cnt = [0] * 30
 
    # Stores the resultant value of X
    X = 0
 
    # Calculate the count of set bits
    # at each position
    for i in range(n):
        for j in range(30):
            # If the jth bit is set
            if arr[i] & (1 << j):
                cnt[j] += 1
 
    # Stores the contribution
    # of each set bit
    v = []
 
    # Store all bit and amount of
    # contribution
    for i in range(30):
        # Find the total contribution
        gain = cnt[i] * (1 << i)
        v.append([i, gain])
 
    # Sort V[] in decreasing
    # order of second parameter
    v.sort(key=lambda x: (x[1], x[0]), reverse=True)
 
    # Choose exactly K set bits
    for i in range(k):
        X |= (1 << v[i][0])
 
    # Print the answer
    print(X)
 
# Driver Code
arr = [3, 4, 5, 1]
K = 1
N = len(arr)
maximize_sum(arr, N, K)
 
# This code is contributed by phasing17


C#




using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG
{
    // Function to find the value of X such that Bitwise AND of all array elements with X is maximum
    static void MaximizeSum(int[] arr, int n, int k)
    {
 
        // Stores the count of set bit at each position
        int[] cnt = new int[30];
 
        // Stores the resultant value of X
        int X = 0;
 
        // Calculate the count of set bits at each position
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < 30; j++)
            {
                // If the jth bit is set
                if ((arr[i] & (1 << j)) != 0)
                    cnt[j]++;
            }
        }
 
        // Store all bit and amount of contribution
        List<int[]> v = new List<int[]>();
        for (int i = 0; i < 30; i++)
        {
            // Find the total contribution
            int gain = cnt[i] * (1 << i);
            v.Add(new int[] { i, gain });
        }
 
        // Sort V[] in decreasing order of second parameter
        v.Sort((a, b) =>
        {
            // If the second is not the same then sort in decreasing order
            if (a[1] != b[1])
                return b[1] - a[1];
 
            // Otherwise
            return a[0] - b[0];
        });
 
        // Choose exactly K set bits
        for (int i = 0; i < k; i++)
        {
            X |= (1 << v[i][0]);
        }
 
        // Print the answer
        Console.WriteLine(X);
    }
 
    // Driver Code
    static public void Main(string[] args)
    {
        int[] arr = { 3, 4, 5, 1 };
        int K = 1;
        int N = arr.Length;
 
        MaximizeSum(arr, N, K);
    }
}


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the value of X
// such that Bitwise AND of all array
// elements with X is maximum
function maximizeSum(arr, n, k) {
    // Stores the count of set bit at
    // each position
    let cnt = new Array(30).fill(0);
 
    // Stores the resultant value of X
    let X = 0;
 
    // Calculate the count of set bits
    // at each position
    for (let i = 0; i < n; i++) {
        for (let j = 0; j < 30; j++) {
 
            // If the jth bit is set
            if (arr[i] & (1 << j))
                cnt[j]++;
        }
    }
 
    // Stores the contribution
    // of each set bit
    let v = new Array();
 
    // Store all bit and amount of
    // contribution
    for (let i = 0; i < 30; i++) {
 
        // Find the total contribution
        let gain = cnt[i] * (1 << i);
        v.push([i, gain]);
    }
 
    // Sort V[] in decreasing
    // order of second parameter
    v.sort((a, b) => {
 
        // If the second is not the same
        // then sort in decreasing order
        if (a[1] != b[1])
            return b[1] - a[1];
 
        // Otherwise
        return a[0] - b[0];
    });
 
    // Choose exactly K set bits
    for (let i = 0; i < k; i++) {
        X |= (1 << v[i][0]);
    }
 
    // Print the answer
    document.write(X);
}
 
// Driver Code
 
let arr = [3, 4, 5, 1];
let K = 1;
let N = arr.length;
maximizeSum(arr, N, K);
 
</script>


Output: 

4

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments