Friday, January 10, 2025
Google search engine
HomeData Modelling & AISmallest divisor D of N such that gcd(D, M) is greater than...

Smallest divisor D of N such that gcd(D, M) is greater than 1

Given two positive integers N and M., The task is to find the smallest divisor D of N such that gcd(D, M) > 1. If there are no such divisors, then print -1. 
Examples: 
 

Input: N = 8, M = 10 
Output: 2
Input: N = 8, M = 1 
Output: -1 

A naive approach is to iterate for every factor and calculate the gcd of the factor and M. If it exceeds M, then we have the answer. 
Time Complexity: O(N * log max(N, M))
An efficient approach is to iterate till sqrt(n) and check for gcd(i, m). If gcd(i, m) > 1, then we print and break it, else we check for gcd(n/i, m) and store the minimum of them. 
Below is the implementation of the above approach.
 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum divisor
int findMinimum(int n, int m)
{
    int mini = m;
 
    // Iterate for all factors of N
    for (int i = 1; i * i <= n; i++) {
        if (n % i == 0) {
            int sec = n / i;
 
            // Check for gcd > 1
            if (__gcd(m, i) > 1) {
                return i;
            }
 
            // Check for gcd > 1
            else if (__gcd(sec, m) > 1) {
                mini = min(sec, mini);
            }
        }
    }
 
    // If gcd is m itself
    if (mini == m)
        return -1;
    else
        return mini;
}
// Drivers code
int main()
{
    int n = 8, m = 10;
    cout << findMinimum(n, m);
    return 0;
}


Java




// Java implementation of the above approach
class GFG
{
 
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
     
}
 
// Function to find the minimum divisor
static int findMinimum(int n, int m)
{
    int mini = m;
 
    // Iterate for all factors of N
    for (int i = 1; i * i <= n; i++)
    {
        if (n % i == 0)
        {
            int sec = n / i;
 
            // Check for gcd > 1
            if (__gcd(m, i) > 1)
            {
                return i;
            }
 
            // Check for gcd > 1
            else if (__gcd(sec, m) > 1)
            {
                mini = Math.min(sec, mini);
            }
        }
    }
 
    // If gcd is m itself
    if (mini == m)
        return -1;
    else
        return mini;
}
 
// Driver code
public static void main (String[] args)
{
    int n = 8, m = 10;
    System.out.println(findMinimum(n, m));
}
}
 
// This code is contributed by chandan_jnu


Python3




# Python3 implementation of the above approach
import math
 
# Function to find the minimum divisor
def findMinimum(n, m):
 
    mini, i = m, 1
     
    # Iterate for all factors of N
    while i * i <= n:
        if n % i == 0:
            sec = n // i
 
            # Check for gcd > 1
            if math.gcd(m, i) > 1:
                return i
 
            # Check for gcd > 1
            elif math.gcd(sec, m) > 1:
                mini = min(sec, mini)
             
        i += 1
 
    # If gcd is m itself
    if mini == m:
        return -1
    else:
        return mini
 
# Drivers code
if __name__ == "__main__":
 
    n, m = 8, 10
    print(findMinimum(n, m))
 
# This code is contributed by Rituraj Jain


C#




// C# implementation of the above approach
using System;
 
class GFG
{
 
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
     
}
 
// Function to find the minimum divisor
static int findMinimum(int n, int m)
{
    int mini = m;
 
    // Iterate for all factors of N
    for (int i = 1; i * i <= n; i++)
    {
        if (n % i == 0)
        {
            int sec = n / i;
 
            // Check for gcd > 1
            if (__gcd(m, i) > 1)
            {
                return i;
            }
 
            // Check for gcd > 1
            else if (__gcd(sec, m) > 1)
            {
                mini = Math.Min(sec, mini);
            }
        }
    }
 
    // If gcd is m itself
    if (mini == m)
        return -1;
    else
        return mini;
}
 
// Driver code
static void Main()
{
    int n = 8, m = 10;
    Console.WriteLine(findMinimum(n, m));
}
}
 
// This code is contributed by chandan_jnu


PHP




<?php
// PHP implementation of the above approach
function __gcd($a, $b)
{
    if ($b == 0)
        return $a;
    return __gcd($b, $a % $b);
     
}
 
// Function to find the minimum divisor
function findMinimum($n, $m)
{
    $mini = $m;
 
    // Iterate for all factors of N
    for ($i = 1; $i * $i <= $n; $i++)
    {
        if ($n % $i == 0)
        {
            $sec = $n / $i;
 
            // Check for gcd > 1
            if (__gcd($m, $i) > 1)
            {
                return $i;
            }
 
            // Check for gcd > 1
            else if (__gcd($sec, $m) > 1)
            {
                $mini = min($sec, $mini);
            }
        }
    }
 
    // If gcd is m itself
    if ($mini == $m)
        return -1;
    else
        return $mini;
}
 
// Driver code
$n = 8; $m = 10;
echo(findMinimum($n, $m));
 
// This code is contributed by Code_Mech.


Javascript




<script>
// javascript implementation of the above approach   
function __gcd(a , b) {
        if (b == 0)
            return a;
        return __gcd(b, a % b);
 
    }
 
    // Function to find the minimum divisor
    function findMinimum(n , m) {
        var mini = m;
 
        // Iterate for all factors of N
        for (var i = 1; i * i <= n; i++) {
            if (n % i == 0) {
                var sec = n / i;
 
                // Check for gcd > 1
                if (__gcd(m, i) > 1) {
                    return i;
                }
 
                // Check for gcd > 1
                else if (__gcd(sec, m) > 1) {
                    mini = Math.min(sec, mini);
                }
            }
        }
 
        // If gcd is m itself
        if (mini == m)
            return -1;
        else
            return mini;
    }
 
    // Driver code
     
        var n = 8, m = 10;
        document.write(findMinimum(n, m));
 
// This code is contributed by todaysgaurav
</script>


Output: 

2

 

Time Complexity: O(sqrt(N) * log max(N, M)), as we are using a loop to traverse sqrt(N) times and we are using the inbuilt GCD function in each traversal which costs logN time.  Where N and M are the two integers provided.
Auxiliary Space: O(1), as we are not using any extra space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments