Friday, January 10, 2025
Google search engine
HomeData Modelling & AISide of a regular n-sided polygon circumscribed in a circle

Side of a regular n-sided polygon circumscribed in a circle

Given two integers r and n where n is the number of sides of a regular polygon and r is the radius of the circle this polygon is circumscribed in. The task is to find the length of the side of polygon. 
 

image

Examples: 
 

Input: n = 5, r = 11 
Output: 12.9256
Input: n = 3, r = 5 
Output: 8.6576 

Approach: Consider the image above and let angle AOB be theta then theta = 360 / n
In right angled triangle $\Delta AOC$      , angle ACO = 90 degrees and angle AOC = theta / 2
So, AC = OA * sin(theta / 2) = r * sin(theta / 2) 
Therefore, side of the polygon, AB = 2 * AC i.e. 2 * r * sin(theta / 2).

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the side of the polygon
// circumscribed in a circle
float calculateSide(float n, float r)
{
    float theta, theta_in_radians;
 
    theta = 360 / n;
    theta_in_radians = theta * 3.14 / 180;
 
    return 2 * r * sin(theta_in_radians / 2);
}
 
// Driver Code
int main()
{
 
    // Total sides of the polygon
    float n = 3;
 
    // Radius of the circumscribing circle
    float r = 5;
 
    cout << calculateSide(n, r);
}


Java




// Java  implementation of the approach
import java.lang.Math;
import java.io.*;
 
class GFG {
     
// Function to calculate the side of the polygon
// circumscribed in a circle
static double calculateSide(double  n, double r)
{
    double theta, theta_in_radians;
 
    theta = 360 / n;
    theta_in_radians = theta * 3.14 / 180;
 
    return 2 * r * Math.sin(theta_in_radians / 2);
}
 
// Driver Code
    public static void main (String[] args) {
 
    // Total sides of the polygon
    double n = 3;
 
    // Radius of the circumscribing circle
    double r = 5;
    System.out.println (calculateSide(n, r));
    }
//This code is contributed by akt_mit   
}


Python3




# Python 3 implementation of the approach
from math import sin
 
# Function to calculate the side of
# the polygon circumscribed in a circle
def calculateSide(n, r):
    theta = 360 / n
    theta_in_radians = theta * 3.14 / 180
 
    return 2 * r * sin(theta_in_radians / 2)
 
# Driver Code
if __name__ == '__main__':
     
    # Total sides of the polygon
    n = 3
 
    # Radius of the circumscribing circle
    r = 5
 
    print('{0:.5}'.format(calculateSide(n, r)))
 
# This code is contributed by
# Sanjit_Prasad


C#




// C# implementation of the approach
 
using System;
 
class GFG {
         
    // Function to calculate the side of the polygon
    // circumscribed in a circle
    static double calculateSide(double n, double r)
    {
        double theta, theta_in_radians;
     
        theta = 360 / n;
        theta_in_radians = theta * 3.14 / 180;
     
        return Math.Round(2 * r * Math.Sin(theta_in_radians / 2),4);
    }
 
        // Driver Code
    public static void Main () {
 
    // Total sides of the polygon
    double n = 3;
 
    // Radius of the circumscribing circle
    double r = 5;
     
    Console.WriteLine(calculateSide(n, r));
    }
    // This code is contributed by Ryuga
}


PHP




<?php
// PHP implementation of the approach
 
// Function to calculate the side of the
// polygon circumscribed in a circle
function calculateSide($n, $r)
{
    $theta; $theta_in_radians;
 
    $theta = 360 / $n;
    $theta_in_radians = $theta * 3.14 / 180;
 
    return 2 * $r * sin($theta_in_radians / 2);
}
 
// Driver Code
 
// Total sides of the polygon
$n = 3;
 
// Radius of the circumscribing circle
$r = 5;
 
echo calculateSide($n, $r);
 
// This code is contributed by inder_verma..
?>


Javascript




<script>
 
// javascript  implementation of the approach
 
    
// Function to calculate the side of the polygon
// circumscribed in a circle
function calculateSide( n , r)
{
    var theta, theta_in_radians;
 
    theta = 360 / n;
    theta_in_radians = theta * 3.14 / 180;
 
    return 2 * r * Math.sin(theta_in_radians / 2);
}
 
// Driver Code
 
// Total sides of the polygon
var n = 3;
 
// Radius of the circumscribing circle
var r = 5;
document.write(calculateSide(n, r).toFixed(5));
 
// This code contributed by Princi Singh
 
</script>


Output

8.6576

Time Complexity: O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments