Sunday, December 29, 2024
Google search engine
HomeData Modelling & AIShortest path with exactly k edges in a directed and weighted graph...

Shortest path with exactly k edges in a directed and weighted graph | Set 2

Given a directed weighted graph and two vertices S and D in it, the task is to find the shortest path from S to D with exactly K edges on the path. If no such path exists, print -1.

Examples: 

Input: N = 3, K = 2, ed = {{{1, 2}, 5}, {{2, 3}, 3}, {{3, 1}, 4}}, S = 1, D = 3 
Output:
Explanation: The shortest path with two edges will be 1->2->3

Input: N = 3, K = 4, ed = {{{1, 2}, 5}, {{2, 3}, 3}, {{3, 1}, 4}}, S = 1, D = 3 
Output: -1 
Explanation: No path with edge length 4 exists from node 1 to 3

Input: N = 3, K = 5, ed = {{{1, 2}, 5}, {{2, 3}, 3}, {{3, 1}, 4}}, S = 1, D = 3 
Output: 20 
Explanation: Shortest path will be 1->2->3->1->2->3.  

Approach: An O(V^3*K) approach for this problem has already been discussed in the previous article. In this article, an O(E*K) approach is discussed for solving this problem. 

The idea is to use dynamic-programming to solve this problem.

Let dp[X][J] be the shortest path from node S to node X using exactly J edges in total. Using this, dp[X][J+1] can be calculated as: 

dp[X][J+1] = min(arr[Y][J]+weight[{Y, X}])
for all Y which has an edge from Y to X.

The result for the problem can be computed by following below steps: 

  1. Initialise an array, dis[] with initial value as ‘inf’ except dis[S] as 0.
  2. For i equals 1 – K, run a loop 
    • Initialise an array, dis1[] with initial value as ‘inf’.
    • For each edge in the graph, 
      dis1[edge.second] = min(dis1[edge.second], dis[edge.first]+weight(edge))
  3. If dist[d] in infinity, return -1, else return dist[d].

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
#define inf 100000000
using namespace std;
 
// Function to find the smallest path
// with exactly K edges
double smPath(int s, int d,
              vector<pair<pair<int, int>, int> > ed,
              int n, int k)
{
    // Array to store dp
    int dis[n + 1];
 
    // Initialising the array
    for (int i = 0; i <= n; i++)
        dis[i] = inf;
    dis[s] = 0;
 
    // Loop to solve DP
    for (int i = 0; i < k; i++) {
 
        // Initialising next state
        int dis1[n + 1];
        for (int j = 0; j <= n; j++)
            dis1[j] = inf;
 
        // Recurrence relation
        for (auto it : ed)
            dis1[it.first.second] = min(dis1[it.first.second],
                                        dis[it.first.first]
                                            + it.second);
        for (int i = 0; i <= n; i++)
            dis[i] = dis1[i];
    }
 
    // Returning final answer
    if (dis[d] == inf)
        return -1;
    else
        return dis[d];
}
 
// Driver code
int main()
{
 
    int n = 4;
    vector<pair<pair<int, int>, int> > ed;
 
    // Input edges
    ed = { { { 0, 1 }, 10 },
           { { 0, 2 }, 3 },
           { { 0, 3 }, 2 },
           { { 1, 3 }, 7 },
           { { 2, 3 }, 7 } };
 
    // Source and Destination
    int s = 0, d = 3;
 
    // Number of edges in path
    int k = 2;
 
    // Calling the function
    cout << smPath(s, d, ed, n, k);
}


Java




// Java implementation of the above approach
import java.util.ArrayList;
import java.util.Arrays;
 
class GFG{
 
static class Pair<K, V>
{
    K first;
    V second;
 
    public Pair(K first, V second)
    {
        this.first = first;
        this.second = second;
    }
}
 
static int inf = 100000000;
 
// Function to find the smallest path
// with exactly K edges
static int smPath(int s, int d,
                  ArrayList<Pair<Pair<Integer, Integer>, Integer>> ed,
                  int n, int k)
{
     
    // Array to store dp
    int[] dis = new int[n + 1];
     
    // Initialising the array
    Arrays.fill(dis, inf);
    dis[s] = 0;
 
    // Loop to solve DP
    for(int i = 0; i < k; i++)
    {
         
        // Initialising next state
        int[] dis1 = new int[n + 1];
        Arrays.fill(dis1, inf);
 
        // Recurrence relation
        for(Pair<Pair<Integer, Integer>, Integer> it : ed)
            dis1[it.first.second] = Math.min(dis1[it.first.second],
                                             dis[it.first.first] +
                                                 it.second);
        for(int j = 0; j <= n; j++)
            dis[j] = dis1[j];
    }
 
    // Returning final answer
    if (dis[d] == inf)
        return -1;
    else
        return dis[d];
}
 
// Driver code
public static void main(String[] args)
{
    int n = 4;
 
    // Input edges
    ArrayList<Pair<Pair<Integer, Integer>, Integer>> ed = new ArrayList<>(
            Arrays.asList(
                    new Pair<Pair<Integer, Integer>, Integer>(
                        new Pair<Integer, Integer>(0, 1), 10),
                    new Pair<Pair<Integer, Integer>, Integer>(
                        new Pair<Integer, Integer>(0, 2), 3),
                    new Pair<Pair<Integer, Integer>, Integer>(
                        new Pair<Integer, Integer>(0, 3), 2),
                    new Pair<Pair<Integer, Integer>, Integer>(
                        new Pair<Integer, Integer>(1, 3), 7),
                    new Pair<Pair<Integer, Integer>, Integer>(
                        new Pair<Integer, Integer>(2, 3), 7)
            )
    );
 
    // Source and Destination
    int s = 0, d = 3;
 
    // Number of edges in path
    int k = 2;
 
    // Calling the function
    System.out.println(smPath(s, d, ed, n, k));
}
}
 
// This code is contributed by sanjeev2552


Python3




# Python3 implementation of the above approach
inf = 100000000
 
# Function to find the smallest path
# with exactly K edges
def smPath(s, d, ed, n, k):
     
    # Array to store dp
    dis = [inf] * (n + 1)
    dis[s] = 0
 
    # Loop to solve DP
    for i in range(k):
 
        # Initialising next state
        dis1 = [inf] * (n + 1)
 
        # Recurrence relation
        for it in ed:
            dis1[it[1]] = min(dis1[it[1]],
                            dis[it[0]]+ it[2])
        for i in range(n + 1):
            dis[i] = dis1[i]
 
    # Returning final answer
    if (dis[d] == inf):
        return -1
    else:
        return dis[d]
 
# Driver code
if __name__ == '__main__':
 
    n = 4
 
    # Input edges
    ed = [ [0, 1 ,10],
           [ 0, 2 ,3],
           [ 0, 3 ,2],
           [ 1, 3 ,7],
           [ 2, 3 ,7] ]
 
    # Source and Destination
    s = 0
    d = 3
 
    # Number of edges in path
    k = 2
 
    # Calling the function
    print(smPath(s, d, ed, n, k))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the above approach
using System;
using System.Linq;
using System.Collections.Generic;
 
public class GFG{
 
static int inf = 100000000;
 
// Function to find the smallest path
// with exactly K edges
public static int smPath(int s, int d,
                  List<KeyValuePair<KeyValuePair<int, int>, int>> ed,
                  int n, int k)
{
     
    // Array to store dp
    // Initialising the array
    int []dis = Enumerable.Repeat(inf, n+1).ToArray();
    dis[s] = 0;
 
    // Loop to solve DP
    for(int i = 0; i < k; i++)
    {
         
        // Initialising next state
        int []dis1 = Enumerable.Repeat(inf, n+1).ToArray();
 
        // Recurrence relation
        foreach(KeyValuePair<KeyValuePair<int, int>, int> it in ed)
            dis1[it.Key.Value] = Math.Min(dis1[it.Key.Value],
                                             dis[it.Key.Key] +
                                                 it.Value);
        for(int j = 0; j <= n; j++)
            dis[j] = dis1[j];
    }
 
    // Returning final answer
    if (dis[d] == inf)
        return -1;
    else
        return dis[d];
}
 
// Driver code
public static void Main(string[] args)
{
    int n = 4;
 
    // Input edges
    List<KeyValuePair<KeyValuePair<int, int>, int>> ed = new List<KeyValuePair<KeyValuePair<int, int>, int>>(){
                    new KeyValuePair<KeyValuePair<int, int>, int>(
                        new KeyValuePair<int, int>(0, 1), 10),
                    new KeyValuePair<KeyValuePair<int, int>, int>(
                        new KeyValuePair<int, int>(0, 2), 3),
                    new KeyValuePair<KeyValuePair<int, int>, int>(
                        new KeyValuePair<int, int>(0, 3), 2),
                    new KeyValuePair<KeyValuePair<int, int>, int>(
                        new KeyValuePair<int, int>(1, 3), 7),
                    new KeyValuePair<KeyValuePair<int, int>, int>(
                        new KeyValuePair<int, int>(2, 3), 7)
    };
 
    // Source and Destination
    int s = 0, d = 3;
 
    // Number of edges in path
    int k = 2;
 
    // Calling the function
    Console.Write(smPath(s, d, ed, n, k));
}
}
 
// This code is contributed by rrrtnx.


Javascript




<script>
// Javascript implementation of the above approach
 
let inf = 100000000;
 
// Function to find the smallest path
// with exactly K edges
function smPath(s,d,ed,n,k)
{
    // Array to store dp
    let dis = new Array(n + 1);
      
    // Initialising the array
    for(let i=0;i<(n+1);i++)
    {
        dis[i]=inf;
    }
     
    dis[s] = 0;
  
    // Loop to solve DP
    for(let i = 0; i < k; i++)
    {
          
        // Initialising next state
        let dis1 = new Array(n + 1);
        for(let i=0;i<(n+1);i++)
        {
            dis1[i]=inf;
        }
         
  
        // Recurrence relation
        for(let it=0;it< ed.length;it++)
            dis1[ed[it][1]] = Math.min(dis1[ed[it][1]],
                                             dis[ed[it][0]] +
                                                 ed[it][2]);
        document.write()
        for(let j = 0; j <= n; j++)
            dis[j] = dis1[j];
    }
  
    // Returning final answer
    if (dis[d] == inf)
        return -1;
    else
        return dis[d];
}
 
// Driver code
let n = 4;
 
 // Input edges
let ed = [ [0, 1 ,10],
           [ 0, 2 ,3],
           [ 0, 3 ,2],
           [ 1, 3 ,7],
           [ 2, 3 ,7] ];
// Source and Destination
let s = 0, d = 3;
 
// Number of edges in path
let k = 2;
 
// Calling the function
document.write(smPath(s, d, ed, n, k));
 
 
// This code is contributed by patel2127
</script>


Output: 

10

 

Time complexity: O(E*K) 
Space complexity: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments