Given a sequence whose nth term is
T(n) = n2 – (n – 1)2
The task is to evaluate the sum of first n terms i.e.
S(n) = T(1) + T(2) + T(3) + … + T(n)
Print S(n) mod (109 + 7).
Examples:
Input: n = 3
Output: 9
S(3) = T(1) + T(2) + T(3) = (12 – 02) + (22 – 12) + (32 – 22) = 1 + 3 + 5 = 9
Input: n = 10
Output: 100
Approach: If we try to find out some initial terms of the sequence by putting n = 1, 2, 3, … in T(n) = n2 – (n – 1)2, we find the sequence 1, 3, 5, …
Hence, we find an A.P. where first term is 1 and d (common difference between consecutive
terms) is 2.
The formula for the sum of n terms of A.P is
S(n) = n / 2 [ 2 * a + (n – 1) * d ]
where a is the first term.
So, putting a = 1 and d = 2, we get
S(n) = n2
.
Below is the implementation of above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define ll long int #define MOD 1000000007 // Function to return the sum // of the given series int sumOfSeries( int n) { ll ans = (ll) pow (n % MOD, 2); return (ans % MOD); } // Driver code int main() { int n = 10; cout << sumOfSeries(n); return 0; } |
Java
// Java implementation of the approach class GFG { public static final int MOD = 1000000007 ; // Function to return the sum // of the given series static int sumOfSeries( int n) { int ans = ( int )Math.pow(n % MOD, 2 ); return (ans % MOD); } // Driver code public static void main(String[] args) { int n = 10 ; System.out.println(sumOfSeries(n)); } } // This code is contributed by Code_Mech. |
Python3
# Python 3 implementation of the approach from math import pow MOD = 1000000007 # Function to return the sum # of the given series def sumOfSeries(n): ans = pow (n % MOD, 2 ) return (ans % MOD) # Driver code if __name__ = = '__main__' : n = 10 print ( int (sumOfSeries(n))) # This code is contributed by # Surendra_Gangwar |
C#
// C# implementation of the approach using System; class GFG { const int MOD = 1000000007; // Function to return the sum // of the given series static int sumOfSeries( int n) { int ans = ( int )Math.Pow(n % MOD, 2); return (ans % MOD); } // Driver code public static void Main() { int n = 10; Console.Write(sumOfSeries(n)); } } // This code is contributed // by Akanksha Rai |
PHP
<?php // PHP implementation of the approach $GLOBALS [ 'MOD' ] = 1000000007; // Function to return the sum // of the given series function sumOfSeries( $n ) { $ans = pow( $n % $GLOBALS [ 'MOD' ], 2); return ( $ans % $GLOBALS [ 'MOD' ]); } // Driver code $n = 10; echo sumOfSeries( $n ); // This code is contributed by Ryuga ?> |
Javascript
<script> // javascript program for the above approach let MOD = 1000000007; // Function to return the sum // of the given series function sumOfSeries(n) { let ans = Math.pow(n % MOD, 2); return (ans % MOD); } // Driver Code let n = 10; document.write(sumOfSeries(n)); </script> |
100
Time Complexity: O(1) because calculation square of a number using pow function takes constant time.
Auxiliary Space: O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!