Saturday, December 28, 2024
Google search engine
HomeData Modelling & AISeries summation if T(n) is given and n is very large

Series summation if T(n) is given and n is very large

Given a sequence whose nth term is 
 

T(n) = n2 – (n – 1)2

 
The task is to evaluate the sum of first n terms i.e. 
 

S(n) = T(1) + T(2) + T(3) + … + T(n)

 
Print S(n) mod (109 + 7).
Examples: 
 

Input: n = 3 
Output:
S(3) = T(1) + T(2) + T(3) = (12 – 02) + (22 – 12) + (32 – 22) = 1 + 3 + 5 = 9
Input: n = 10 
Output: 100 
 

 

Approach: If we try to find out some initial terms of the sequence by putting n = 1, 2, 3, … in T(n) = n2 – (n – 1)2, we find the sequence 1, 3, 5, … 
Hence, we find an A.P. where first term is 1 and d (common difference between consecutive 
terms) is 2
The formula for the sum of n terms of A.P is 
 

S(n) = n / 2 [ 2 * a + (n – 1) * d ]

 
where a is the first term. 
So, putting a = 1 and d = 2, we get 
 

S(n) = n2

.
Below is the implementation of above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define ll long int
#define MOD 1000000007
 
// Function to return the sum
// of the given series
int sumOfSeries(int n)
{
    ll ans = (ll)pow(n % MOD, 2);
 
    return (ans % MOD);
}
 
// Driver code
int main()
{
    int n = 10;
    cout << sumOfSeries(n);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
public static final int MOD = 1000000007;
 
// Function to return the sum
// of the given series
static int sumOfSeries(int n)
{
    int ans = (int)Math.pow(n % MOD, 2);
 
    return (ans % MOD);
}
 
// Driver code
public static void main(String[] args)
{
    int n = 10;
    System.out.println(sumOfSeries(n));
}
}
 
// This code is contributed by Code_Mech.


Python3




# Python 3 implementation of the approach
from math import pow
 
MOD = 1000000007
 
# Function to return the sum
# of the given series
def sumOfSeries(n):
    ans = pow(n % MOD, 2)
 
    return (ans % MOD)
 
# Driver code
if __name__ == '__main__':
    n = 10
    print(int(sumOfSeries(n)))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
const int MOD = 1000000007;
 
// Function to return the sum
// of the given series
static int sumOfSeries(int n)
{
    int ans = (int)Math.Pow(n % MOD, 2);
 
    return (ans % MOD);
}
 
// Driver code
public static void Main()
{
    int n = 10;
    Console.Write(sumOfSeries(n));
}
}
 
// This code is contributed
// by Akanksha Rai


PHP




<?php
// PHP implementation of the approach
$GLOBALS['MOD'] = 1000000007;
 
// Function to return the sum
// of the given series
function sumOfSeries($n)
{
    $ans = pow($n % $GLOBALS['MOD'], 2);
 
    return ($ans % $GLOBALS['MOD']);
}
 
// Driver code
$n = 10;
echo sumOfSeries($n);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// javascript program for the above approach
 
let MOD = 1000000007;
 
// Function to return the sum
// of the given series
function sumOfSeries(n)
{
    let ans = Math.pow(n % MOD, 2);
 
    return (ans % MOD);
}
 
// Driver Code
     
        let n = 10;
    document.write(sumOfSeries(n));
 
</script>


Output

100

Time Complexity: O(1) because calculation square of a number using pow function takes constant time.
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments