Saturday, December 28, 2024
Google search engine
HomeData Modelling & AISequences of given length where every element is more than or equal...

Sequences of given length where every element is more than or equal to twice of previous

Given two integers m & n, find the number of possible sequences of length n such that each of the next element is greater than or equal to twice of the previous element but less than or equal to m.

Examples : 

Input : m = 10, n = 4
Output : 4
There should be n elements and value of last
element should be at-most m.
The sequences are {1, 2, 4, 8}, {1, 2, 4, 9},
                 {1, 2, 4, 10}, {1, 2, 5, 10}

Input : m = 5, n = 2
Output : 6
The sequences are {1, 2}, {1, 3}, {1, 4},
                  {1, 5}, {2, 4}, {2, 5}
Recommended Practice

As per the given condition, the n-th value of the sequence can be at most m. There can be two cases for the n-th element:  

  1. If it is m, then the (n-1)th element is at most m/2. We recur for m/2 and n-1.
  2. If it is not m, then it is at most is m-1. We recur for (m-1) and n.

The total number of sequences is the sum of the number of sequences including m and the number of sequences where m is not included. Thus the original problem of finding number of sequences of length n with max value m can be subdivided into independent subproblems of finding number of sequences of length n with max value m-1 and number of sequences of length n-1 with max value m/2.

C++




// C++ program to count total number
// of special sequences of length n where
#include <iostream>
using namespace std;
 
// Recursive function to find the number of special
// sequences
int getTotalNumberOfSequences(int m, int n)
{
     
    // A special sequence cannot exist if length
    // n is more than the maximum value m.
    if (m < n)
        return 0;
  
    // If n is 0, found an empty special sequence
    if (n == 0)
        return 1;
  
    // There can be two possibilities : (1) Reduce
    // last element value (2) Consider last element
    // as m and reduce number of terms
    return getTotalNumberOfSequences(m - 1, n) +
           getTotalNumberOfSequences(m / 2, n - 1);
}  
 
// Driver code
int main()
{
    int m = 10;
    int n = 4;
    cout << "Total number of possible sequences "
         << getTotalNumberOfSequences(m, n);
    return 0;
}
 
// This code is contributed by shivanisinghss2110


Java




// Java program to count total number
// of special sequences of length n where
import java.io.*;
class Sequences {
    // Recursive function to find the number of special
    // sequences
    static int getTotalNumberOfSequences(int m, int n)
    {
        // A special sequence cannot exist if length
        // n is more than the maximum value m.
        if (m < n)
            return 0;
 
        // If n is 0, found an empty special sequence
        if (n == 0)
            return 1;
 
        // There can be two possibilities : (1) Reduce
        // last element value (2) Consider last element
        // as m and reduce number of terms
        return getTotalNumberOfSequences(m - 1, n)
            + getTotalNumberOfSequences(m / 2, n - 1);
    }
 
    // main function
    public static void main(String[] args)
    {
        int m = 10;
        int n = 4;
        System.out.println(
            "Total number of possible sequences "
            + getTotalNumberOfSequences(m, n));
    }
}


Python3




#Python3 program to count total number of
#special sequences of length n where
#Recursive function to find the number of
# special sequences
def getTotalNumberOfSequences(m,n):
 
    #A special sequence cannot exist if length
    #n is more than the maximum value m.
    if m<n:
        return 0
 
    #If n is 0, found an empty special sequence
    if n==0:
        return 1
 
    #There can be two possibilities : (1) Reduce
    #last element value (2) Consider last element
    #as m and reduce number of terms
    res=(getTotalNumberOfSequences(m-1,n)+
         getTotalNumberOfSequences(m//2,n-1))
    return res
 
#Driver Code
if __name__=='__main__':
    m=10
    n=4
    print('Total number of possible sequences:',getTotalNumberOfSequences(m,n))
     
#This code is contributed by sahilshelangia


C#




// C# program to count total number
// of special sequences of length n
// where every element is more than
// or equal to twice of previous
using System;
 
class GFG
{
    // Recursive function to find
    // the number of special sequences
    static int getTotalNumberOfSequences(int m, int n)
    {
        // A special sequence cannot exist if length
        // n is more than the maximum value m.
        if(m < n)
            return 0;
     
        // If n is 0, found an empty special sequence
        if(n == 0)
            return 1;
     
        // There can be two possibilities : (1) Reduce
        // last element value (2) Consider last element
        // as m and reduce number of terms
        return getTotalNumberOfSequences (m-1, n) +
               getTotalNumberOfSequences (m/2, n-1);
    }
     
    // Driver code
    public static void Main ()
    {
        int m = 10;
        int n = 4;
        Console.Write("Total number of possible sequences " +
                           getTotalNumberOfSequences(m, n));
    }
}
 
// This code is contributed by nitin mittal.


PHP




<?php
// PHP program to count total
// number of special sequences
// of length n where
 
// Recursive function to find
// the number of special sequences
function getTotalNumberOfSequences($m, $n)
{
     
    // A special sequence cannot
    // exist if length n is more
    // than the maximum value m.
    if ($m < $n)
        return 0;
 
    // If n is 0, found an empty
    // special sequence
    if ($n == 0)
        return 1;
 
    // There can be two possibilities :
    // (1) Reduce last element value
    // (2) Consider last element
    // as m and reduce number of terms
    return getTotalNumberOfSequences($m - 1, $n) +
           getTotalNumberOfSequences($m / 2, $n - 1);
}
 
    // Driver Code
    $m = 10;
    $n = 4;
    echo("Total number of possible sequences ");
    echo (getTotalNumberOfSequences($m, $n));
 
// This code is contributed by nitin mittal.
?>


Javascript




<script>
// program to count total number of special sequences
// of length n where
   
// Recursive function to find the number of special
// sequences
   function  getTotalNumberOfSequences( m, n)
{
    // A special sequence cannot exist if length
    // n is more than the maximum value m.
    if (m < n)
        return 0;
   
    // If n is 0, found an empty special sequence
    if (n == 0)
        return 1;
   
    // There can be two possibilities : (1) Reduce
    // last element value (2) Consider last element
    // as m and reduce number of terms
    return getTotalNumberOfSequences (m-1, n) +
           getTotalNumberOfSequences (m/2, n-1);
}
   
// Driver Code
  
    let m = 10;
    let n = 4;
    document.write ("Total number of possible sequences ",
                   getTotalNumberOfSequences(m, n));
                    
// This code is contributed by anikakapoor.
</script>


Output

Total number of possible sequences 4

Time Complexity: O(2m)  in the worst case
Auxiliary Space: O(m), depth of recursion tree is m in the worst case.

Note that the above function computes the same sub-problems again and again. Consider the following tree for f(10, 4).

Sequences of given length where every element is more than or equal to twice of previous

Recursive Tree for m= 10 and N =4

We can solve this problem using dynamic programming.

C++




// C program to count total number of special sequences
// of length N where
#include <stdio.h>
 
// DP based function to find the number of special
// sequences
int  getTotalNumberOfSequences(int m, int n)
{
        // define T and build in bottom manner to store
        // number of special sequences of length n and
        // maximum value m
        int T[m+1][n+1];
        for (int i=0; i<m+1; i++)
        {
            for (int j=0; j<n+1; j++)
            {
                // Base case : If length of sequence is 0
                // or maximum value is 0, there cannot
                // exist any special sequence
                if (i == 0 || j == 0)
                    T[i][j] = 0;
 
                // if length of sequence is more than
                // the maximum value, special sequence
                // cannot exist
                else if (i < j)
                    T[i][j] = 0;
 
                // If length of sequence is 1 then the
                // number of special sequences is equal
                // to the maximum value
                // For example with maximum value 2 and
                // length 1, there can be 2 special
                // sequences {1}, {2}
                else if (j == 1)
                    T[i][j] = i;
 
                // otherwise calculate
                else
                    T[i][j] = T[i-1][j] + T[i/2][j-1];
            }
        }
        return T[m][n];
}
 
// Driver Code
int main()
{
    int m = 10;
    int n = 4;
    printf("Total number of possible sequences %d",
                   getTotalNumberOfSequences(m, n));
    return 0;
}


Java




// Efficient java program to count total number
// of special sequences of length n where
import java.io.*;
class Sequences {
    // DP based function to find the number of special
    // sequences
    static int getTotalNumberOfSequences(int m, int n)
    {
        // define T and build in bottom manner to store
        // number of special sequences of length n and
        // maximum value m
        int T[][] = new int[m + 1][n + 1];
        for (int i = 0; i < m + 1; i++) {
            for (int j = 0; j < n + 1; j++) {
                // Base case : If length of sequence is 0
                // or maximum value is 0, there cannot
                // exist any special sequence
                if (i == 0 || j == 0)
                    T[i][j] = 0;
 
                // if length of sequence is more than
                // the maximum value, special sequence
                // cannot exist
                else if (i < j)
                    T[i][j] = 0;
 
                // If length of sequence is 1 then the
                // number of special sequences is equal
                // to the maximum value
                // For example with maximum value 2 and
                // length 1, there can be 2 special
                // sequences {1}, {2}
                else if (j == 1)
                    T[i][j] = i;
 
                // otherwise calculate
                else
                    T[i][j] = T[i - 1][j] + T[i / 2][j - 1];
            }
        }
        return T[m][n];
    }
 
    // main function
    public static void main(String[] args)
    {
        int m = 10;
        int n = 4;
        System.out.println(
            "Total number of possible sequences "
            + getTotalNumberOfSequences(m, n));
    }
}


Python3




#Python3 program to count total number of
#special sequences of length N where
 
#DP based function to find the number
# of special sequence
def getTotalNumberOfSequences(m,n):
 
    #define T and build in bottom manner to store
    #number of special sequences of length n and
    #maximum value m
    T=[[0 for i in range(n+1)] for i in range(m+1)]
    for i in range(m+1):
        for j in range(n+1):
 
            #Base case : If length of sequence is 0
            # or maximum value is 0, there cannot
            #exist any special sequence
            if i==0 or j==0:
                T[i][j]=0
 
            #if length of sequence is more than
            #the maximum value, special sequence
            # cannot exist
            elif i<j:
                T[i][j]=0
 
            # If length of sequence is 1 then the
            # number of special sequences is equal
            # to the maximum value
            # For example with maximum value 2 and
            # length 1, there can be 2 special
            # sequences {1}, {2}
            elif j==1:
                T[i][j]=i
            else:
                T[i][j]=T[i-1][j]+T[i//2][j-1]
    return T[m][n]
     
#Driver Code
if __name__=='__main__':
    m=10
    n=4
    print('Total number of possible sequences ',getTotalNumberOfSequences(m, n))
 
#This code is contributed by sahilshelangia


C#




// Efficient C# program to count total number
// of special sequences of length n where
using System;
class Sequences {
     
    // DP based function to find
    // the number of special
    // sequences
    static int getTotalNumberOfSequences(int m, int n)
    {
         
            // define T and build in
            // bottom manner to store
            // number of special sequences
            // of length n and maximum value m
            int [,]T=new int[m + 1, n + 1];
             
            for (int i = 0; i < m + 1; i++)
            {
                for (int j = 0; j < n + 1; j++)
                {
                     
                    // Base case : If length
                    // of sequence is 0
                    // or maximum value is
                    // 0, there cannot
                    // exist any special
                    // sequence
                    if (i == 0 || j == 0)
                        T[i, j] = 0;
     
                    // if length of sequence
                    // is more than the maximum
                    // value, special sequence
                    // cannot exist
                    else if (i < j)
                        T[i,j] = 0;
     
                    // If length of sequence is 1 then the
                    // number of special sequences is equal
                    // to the maximum value
                    // For example with maximum value 2 and
                    // length 1, there can be 2 special
                    // sequences {1}, {2}
                    else if (j == 1)
                        T[i,j] = i;
     
                    // otherwise calculate
                    else
                        T[i,j] = T[i - 1, j] + T[i / 2, j - 1];
                }
            }
            return T[m,n];
    }
     
    // Driver Code
    public static void Main ()
    {
        int m = 10;
        int n = 4;
        Console.WriteLine("Total number of possible sequences "+
                                getTotalNumberOfSequences(m, n));
    }
}
 
// This code is contributed by anuj_67.


PHP




<?php
// PHP program to count total
// number of special sequences
// of length N where
 
// DP based function to find
// the number of special
// sequences
function getTotalNumberOfSequences($m, $n)
{
     
        // define T and build in bottom
        // manner to store number of
        // special sequences of length
        // n and maximum value m
        $T = array(array());
         
        for ($i = 0; $i < $m + 1; $i++)
        {
            for ($j = 0; $j < $n + 1; $j++)
            {
                 
                // Base case : If length of
                // sequence is 0 or maximum
                // value is 0, there cannot
                // exist any special sequence
                if ($i == 0 or $j == 0)
                    $T[$i][$j] = 0;
 
                // if length of sequence is
                // more than the maximum value,
                // special sequence cannot exist
                else if ($i < $j)
                    $T[$i][$j] = 0;
 
                // If length of sequence is
                // 1 then the number of
                // special sequences is equal
                // to the maximum value
                // For example with maximum
                // value 2 and length 1, there
                // can be 2 special sequences
                // {1}, {2}
                else if ($j == 1)
                    $T[$i][$j] = $i;
 
                // otherwise calculate
                else
                    $T[$i][$j] = $T[$i - 1][$j] +
                                 $T[$i / 2][$j - 1];
            }
        }
        return $T[$m][$n];
}
 
    // Driver Code
    $m = 10;
    $n = 4;
    echo "Total number of possible sequences ",
            getTotalNumberOfSequences($m, $n);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
    // Efficient javascript program to count total number
    // of special sequences of length n where
     
    // DP based function to find the number of special
    // sequences
    function getTotalNumberOfSequences(m, n)
    {
            // define T and build in bottom manner to store
            // number of special sequences of length n and
            // maximum value m
            let T = new Array(m+1);
            for (let i=0; i<m+1; i++)
            {
                T[i] = new Array(n+1);
                for (let j=0; j<n+1; j++)
                {
                    // Base case : If length of sequence is 0
                    // or maximum value is 0, there cannot
                    // exist any special sequence
                    if (i == 0 || j == 0)
                        T[i][j] = 0;
       
                    // if length of sequence is more than
                    // the maximum value, special sequence
                    // cannot exist
                    else if (i < j)
                        T[i][j] = 0;
       
                    // If length of sequence is 1 then the
                    // number of special sequences is equal
                    // to the maximum value
                    // For example with maximum value 2 and
                    // length 1, there can be 2 special
                    // sequences {1}, {2}
                    else if (j == 1)
                        T[i][j] = i;
       
                    // otherwise calculate
                    else
                        T[i][j] = T[i-1][j] + T[parseInt(i/2, 10)][j-1];
                }
            }
            return T[m][n];
    }
     
    let m = 10;
    let n = 4;
    document.write("Total number of possible sequences "+
                       getTotalNumberOfSequences(m, n));
   
  // This code is contributed rameshtravel07.
</script>


Output

Total number of possible sequences 4

Time Complexity : O(m x n) 
Auxiliary Space : O(m x n)

This article is contributed by Bahubali. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments