Friday, December 27, 2024
Google search engine
HomeLanguagesSelecting rows in pandas DataFrame based on conditions

Selecting rows in pandas DataFrame based on conditions

Let’s see how to Select rows based on some conditions in Pandas DataFrame.

Selecting rows based on particular column value using '>', '=', '=', '<=', '!=' operator.

Code #1 : Selecting all the rows from the given dataframe in which ‘Percentage’ is greater than 80 using basic method.

Python3


# importing pandas
import pandas as pd

record = {

 'Name': ['Ankit', 'Amit', 'Aishwarya', 'Priyanka', 'Priya', 'Shaurya' ],
 'Age': [21, 19, 20, 18, 17, 21],
 'Stream': ['Math', 'Commerce', 'Science', 'Math', 'Math', 'Science'],
 'Percentage': [88, 92, 95, 70, 65, 78] }

# create a dataframe
dataframe = pd.DataFrame(record, columns = ['Name', 'Age', 'Stream', 'Percentage'])

print(&quot;Given Dataframe :\n&quot;, dataframe) 

# selecting rows based on condition
rslt_df = dataframe[dataframe['Percentage'] &gt; 80]

print('\nResult dataframe :\n', rslt_df)
RELATED ARTICLES

Most Popular

Recent Comments