Saturday, January 11, 2025
Google search engine
HomeData Modelling & AISeating arrangement of N boys sitting around a round table such that...

Seating arrangement of N boys sitting around a round table such that two particular boys sit together

There are N boys which are to be seated around a round table. The task is to find the number of ways in which N boys can sit around a round table such that two particular boys sit together.
Examples: 
 

Input: N = 5 
Output: 12 
2 boy can be arranged in 2! ways and other boys 
can be arranged in (5 – 2)! (2 is subtracted because the 
previously selected two boys will be considered as a single boy now and No. of ways to arrange boys around a round table = (n-1)!) 
So, total ways are 2! * (n-2)!)  =  2! * 3! = 12
Input: N = 9 
Output: 10080
 

 

Approach: 
 

  • First, 2 boys can be arranged in 2! ways.
  • No. of ways to arrange remaining boys and the previous two boy pair is (n – 2)!.
  • So, Total ways = 2! * (n – 2)!.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the total count of ways
int Total_Ways(int n)
{
 
    // Find (n - 2) factorial
    int fac = 1;
    for (int i = 2; i <= n - 2; i++) {
        fac = fac * i;
    }
 
    // Return (n - 2)! * 2!
    return (fac * 2);
}
 
// Driver code
int main()
{
    int n = 5;
 
    cout << Total_Ways(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
// Function to return the total count of ways
static int Total_Ways(int n)
{
 
    // Find (n - 2) factorial
    int fac = 1;
    for (int i = 2; i <= n - 2; i++)
    {
        fac = fac * i;
    }
 
    // Return (n - 2)! * 2!
    return (fac * 2);
}
 
// Driver code
public static void main (String[] args)
{
 
    int n = 5;
 
    System.out.println (Total_Ways(n));
}
}
 
// This code is contributed by Tushil.


Python3




# Python3 implementation of the approach
 
# Function to return the total count of ways
def Total_Ways(n) :
 
    # Find (n - 2) factorial
    fac = 1;
    for i in range(2, n-1) :
        fac = fac * i;
         
    # Return (n - 2)! * 2!
    return (fac * 2);
 
 
# Driver code
if __name__ == "__main__" :
 
    n = 5;
 
    print(Total_Ways(n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the total count of ways
static int Total_Ways(int n)
{
 
    // Find (n - 2) factorial
    int fac = 1;
    for (int i = 2; i <= n - 2; i++)
    {
        fac = fac * i;
    }
 
    // Return (n - 2)! * 2!
    return (fac * 2);
}
 
// Driver code
static public void Main ()
{
    int n = 5;
 
    Console.Write(Total_Ways(n));
}
}
 
// This code is contributed by ajit..


Javascript




<script>
// javascript implementation of the approach
 
    // Function to return the total count of ways
    function Total_Ways(n)
    {
 
        // Find (n - 2) factorial
        var fac = 1;
        for (i = 2; i <= n - 2; i++)
        {
            fac = fac * i;
        }
 
        // Return (n - 2)! * 2!
        return (fac * 2);
    }
 
    // Driver code
        var n = 5;
        document.write(Total_Ways(n));
 
// This code is contributed by aashish1995
</script>


Output

12

Time Complexity: O(n)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments