Given an array of N sorted ranges and a number K. The task is to find the index of the range in which K lies. If K does not lie in any of the given ranges then print -1.
Note: None of the given ranges coincide.
Examples:
Input: arr[] = { { 1, 3 }, { 4, 7 }, { 8, 11 } }, K = 6
Output: 1
6 lies in the range {4, 7} with index = 1
Input: arr[] = { { 1, 3 }, { 4, 7 }, { 9, 11 } }, K = 8
Output: -1
Naive approach: The following steps can be followed to solve the above problem.
- Traverse all the ranges.
- Check if the condition K >= arr[i].first && K <= arr[i].second holds in any of the iterations.
- If the number K does not lie in any of the given ranges then print -1.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the index of the range // in which K lies and uses linear search int findNumber(pair< int , int > a[], int n, int K) { // Iterate and find the element for ( int i = 0; i < n; i++) { // If K lies in the current range if (K >= a[i].first && K <= a[i].second) return i; } // K doesn't lie in any of the given ranges return -1; } // Driver code int main() { pair< int , int > a[] = { { 1, 3 }, { 4, 7 }, { 8, 11 } }; int n = sizeof (a) / sizeof (a[0]); int k = 6; int index = findNumber(a, n, k); if (index != -1) cout << index; else cout << -1; return 0; } |
Java
// Java implementation of the approach class GFG { static class pair { int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Function to return the index // of the range in which K lies // and uses linear search static int findNumber(pair a[], int n, int K) { // Iterate and find the element for ( int i = 0 ; i < n; i++) { // If K lies in the current range if (K >= a[i].first && K <= a[i].second) return i; } // K doesn't lie in any // of the given ranges return - 1 ; } // Driver code public static void main(String[] args) { pair a[] = { new pair( 1 , 3 ), new pair( 4 , 7 ), new pair( 8 , 11 )}; int n = a.length; int k = 6 ; int index = findNumber(a, n, k); if (index != - 1 ) System.out.println(index); else System.out.println(- 1 ); } } // This code is contributed by Rajput-Ji |
Python3
# Python 3 implementation of the approach # Function to return the index of the range # in which K lies and uses linear search def findNumber(a, n, K): # Iterate and find the element for i in range ( 0 , n, 1 ): # If K lies in the current range if (K > = a[i][ 0 ] and K < = a[i][ 1 ]): return i # K doesn't lie in any of the # given ranges return - 1 # Driver code if __name__ = = '__main__' : a = [[ 1 , 3 ], [ 4 , 7 ], [ 8 , 11 ]] n = len (a) k = 6 index = findNumber(a, n, k) if (index ! = - 1 ): print (index, end = "") else : print ( - 1 , end = "") # This code is contributed by # Surendra_Gangwar |
C#
// C# implementation of the approach using System; class GFG { class pair { public int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Function to return the index // of the range in which K lies // and uses linear search static int findNumber(pair []a, int n, int K) { // Iterate and find the element for ( int i = 0; i < n; i++) { // If K lies in the current range if (K >= a[i].first && K <= a[i].second) return i; } // K doesn't lie in any // of the given ranges return -1; } // Driver code public static void Main(String[] args) { pair []a = { new pair(1, 3 ), new pair(4, 7 ), new pair(8, 11 )}; int n = a.Length; int k = 6; int index = findNumber(a, n, k); if (index != -1) Console.WriteLine(index); else Console.WriteLine(-1); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation of the approach // Function to return the index of the range // in which K lies and uses linear search function findNumber(a, n, K) { // Iterate and find the element for ( var i = 0; i < n; i++) { // If K lies in the current range if (K >= a[i][0] && K <= a[i][1]) return i; } // K doesn't lie in any of the given ranges return -1; } // Driver code var a = [ [ 1, 3 ], [ 4, 7 ], [ 8, 11 ] ]; var n = a.length; var k = 6; var index = findNumber(a, n, k); if (index != -1) document.write( index); else document.write( -1); </script> |
1
Time Complexity: O(N), as we are using a loop to traverse N times to check if the number lies in the given range. Where N is the number of pairs in the array.
Auxiliary Space: O(1), as we are not using any extra space.
Efficient Approach: Binary Search can be used to find the element in O(log N).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the index of the range // in which K lies and uses binary search int findNumber(pair< int , int > a[], int n, int K) { int low = 0, high = n - 1; // Binary search while (low <= high) { // Find the mid element int mid = (low + high) >> 1; // If element is found if (K >= a[mid].first && K <= a[mid].second) return mid; // Check in first half else if (K < a[mid].first) high = mid - 1; // Check in second half else low = mid + 1; } // Not found return -1; } // Driver code int main() { pair< int , int > a[] = { { 1, 3 }, { 4, 7 }, { 8, 11 } }; int n = sizeof (a) / sizeof (a[0]); int k = 6; int index = findNumber(a, n, k); if (index != -1) cout << index; else cout << -1; return 0; } |
Java
// Java implementation of the approach class GFG { static class pair { int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Function to return the index of the range // in which K lies and uses binary search static int findNumber(pair a[], int n, int K) { int low = 0 , high = n - 1 ; // Binary search while (low <= high) { // Find the mid element int mid = (low + high) >> 1 ; // If element is found if (K >= a[mid].first && K <= a[mid].second) return mid; // Check in first half else if (K < a[mid].first) high = mid - 1 ; // Check in second half else low = mid + 1 ; } // Not found return - 1 ; } // Driver code public static void main(String[] args) { pair a[] = { new pair( 1 , 3 ), new pair( 4 , 7 ), new pair( 8 , 11 ) }; int n = a.length; int k = 6 ; int index = findNumber(a, n, k); if (index != - 1 ) System.out.println(index); else System.out.println(- 1 ); } } // This code is contributed by Princi Singh |
Python3
# Python3 implementation of the approach # Function to return the index of the range # in which K lies and uses binary search def findNumber(a, n, K): low = 0 high = n - 1 # Binary search while (low < = high): # Find the mid element mid = (low + high) >> 1 # If element is found if (K > = a[mid][ 0 ] and K < = a[mid][ 1 ]): return mid # Check in first half elif (K < a[mid][ 0 ]): high = mid - 1 # Check in second half else : low = mid + 1 # Not found return - 1 # Driver code a = [ [ 1 , 3 ], [ 4 , 7 ], [ 8 , 11 ] ] n = len (a) k = 6 index = findNumber(a, n, k) if (index ! = - 1 ): print (index) else : print ( - 1 ) # This code is contributed by mohit kumar |
C#
// C# implementation of the above approach using System; class GFG { public class pair { public int first, second; public pair( int first, int second) { this .first = first; this .second = second; } } // Function to return the index of the range // in which K lies and uses binary search static int findNumber(pair []a, int n, int K) { int low = 0, high = n - 1; // Binary search while (low <= high) { // Find the mid element int mid = (low + high) >> 1; // If element is found if (K >= a[mid].first && K <= a[mid].second) return mid; // Check in first half else if (K < a[mid].first) high = mid - 1; // Check in second half else low = mid + 1; } // Not found return -1; } // Driver code public static void Main(String[] args) { pair []a = { new pair(1, 3), new pair(4, 7), new pair(8, 11)}; int n = a.Length; int k = 6; int index = findNumber(a, n, k); if (index != -1) Console.WriteLine(index); else Console.WriteLine(-1); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript implementation of the approach class pair { constructor(first , second) { this .first = first; this .second = second; } } // Function to return the index of the range // in which K lies and uses binary search function findNumber( a , n , K) { var low = 0, high = n - 1; // Binary search while (low <= high) { // Find the mid element var mid = (low + high) >> 1; // If element is found if (K >= a[mid].first && K <= a[mid].second) return mid; // Check in first half else if (K < a[mid].first) high = mid - 1; // Check in second half else low = mid + 1; } // Not found return -1; } // Driver code var a = [ new pair(1, 3), new pair(4, 7), new pair(8, 11) ]; var n = a.length; var k = 6; var index = findNumber(a, n, k); if (index != -1) document.write(index); else document.write(-1); // This code contributed by gauravrajput1 </script> |
1
Time Complexity: O(log N), as we are using binary search, in each traversal we divide the array into two halves and choose one of them to search further in. So the effective time is 1+1/2+1/4+….+1/2^N which is equivalent to logN. Where N is the number of pairs in the array.
Auxiliary Space: O(1), as we are not using any extra space.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!