scipy.stats.relfreq(a, numbins, defaultreallimits, weights)  is a relative frequency histogram, using the histogram function. 
Parameters :
arr : [array_like] input array.
numbins : Number of bins to use for the histogram. [Default = 10]
defaultreallimits : (lower, upper) range of the histogram.
weights : [array_like] weights for each array element.Results :
– relative frequency binned values
– width of each bin
– lower real limit
– extra points.
Code #1:
| # relative frequency fromscipy importstats importnumpy as np   arr1 =[1, 3, 27, 2, 5, 13]  print("Array element : ", arr1, "\n")  a, b, c, d =stats.relfreq(arr1, numbins =4)  print("cumulative frequency : ", a) print("Lower Limit : ", b) print("bin size : ", c) print("extra-points : ", d)  | 
Output :
Array element : [1, 3, 27, 2, 5, 13] cumulative frequency : [0.66666667 0.16666667 0. 0.16666667] Lower Limit : -3.333333333333333 bin size : 8.666666666666666 extra-points : 0
Code #2:
| # relative frequency fromscipy importstats importnumpy as np   arr1 =[1, 3, 27, 2, 5, 13]  print("Array element : ", arr1, "\n")  a, b, c, d =stats.relfreq(arr1, numbins =4,               weights =[.1, .2, .1, .3, 1, 6])  print("cumfreqs : ", a) print("lowlim : ", b) print("binsize : ", c) print("extrapoints : ", d)  | 
Output :
Array element : [1, 3, 27, 2, 5, 13] cumfreqs : [0.26666667 1. 0. 0.01666667] lowlim : -3.333333333333333 binsize : 8.666666666666666 extrapoints : 0

 
                                    







