Friday, November 21, 2025
HomeLanguagesscipy stats.halflogistic() | Python

scipy stats.halflogistic() | Python

scipy.stats.halflogistic() is an Half-logistic continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
-> q : lower and upper tail probability
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Half-logistic continuous random variable

Code #1 : Creating Half-logistic continuous random variable




from scipy.stats import halflogistic  
  
numargs = halflogistic  .numargs
[] = [0.7, ] * numargs
rv = halflogistic ()
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001E39A2EA7B8>

Code #2 : Half-logistic random variates and probability distribution




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = halflogistic .rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = halflogistic .pdf(quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [1.51677656 4.2051329  3.00947016 5.00828865 8.23514322 0.46379571
 1.75794767 2.84948119 0.31392647 1.36186056]

Probability Distribution : 
 [0.4999875  0.49849054 0.49452777 0.48817731 0.47956248 0.46884669
 0.45622704 0.44192689 0.42618788 0.40926186]

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = halflogistic .pdf(x, 1, 3)
y2 = halflogistic .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32405 POSTS0 COMMENTS
Milvus
97 POSTS0 COMMENTS
Nango Kala
6781 POSTS0 COMMENTS
Nicole Veronica
11928 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11997 POSTS0 COMMENTS
Shaida Kate Naidoo
6907 POSTS0 COMMENTS
Ted Musemwa
7166 POSTS0 COMMENTS
Thapelo Manthata
6862 POSTS0 COMMENTS
Umr Jansen
6847 POSTS0 COMMENTS