Thursday, November 13, 2025
HomeLanguagesscipy stats.halfgennorm() | Python

scipy stats.halfgennorm() | Python

scipy.stats.halfgennorm() is an upper half of a generalized normal continuous random variable. To complete its specificaitons, it is defined with a standard format and some shape parameters. The object object inherits from it a collection of generic methods and completes them with details specific.

Parameters :

-> α : scale
-> β : shape
-> μ : location
Code #1 : Creating Half-generalized normal continuous random variable




from scipy.stats import halfgennorm  
   
numargs = halfgennorm.numargs
[a] = [0.7, ] * numargs
rv = halfgennorm (a)
   
print ("RV : \n", rv) 


Output:

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000021FB55D8DD8

Code #2 : Half-generalized random variates and probability distribution




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
    
# Random Variates
R = halfgennorm .rvs(.2, scale = 2,  size = 10)
print ("Random Variates : \n", R)
   
# PDF
R = halfgennorm .pdf(quantile, .2, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output:

Random Variates : 
 [1.41299459e+03 3.51301175e+04 1.79981484e+05 2.90925518e+02
 2.70178121e+05 1.31706797e+05 3.25898913e+01 1.62607410e+04
 2.02263946e+04 1.97078668e+04]

Probability Distribution : 
 [0.00559658 0.0043805  0.00400834 0.0037776  0.00360957 0.00347731
 0.00336825 0.00327549 0.00319482 0.00312348]

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
   
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
   
plot = plt.plot(distribution, rv.pdf(distribution))


Output:

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
   
x = np.linspace(0, 5, 100)
   
# Varying positional arguments
y1 = halfgennorm .pdf(x, 1, 3)
y2 = halfgennorm .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output:

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32399 POSTS0 COMMENTS
Milvus
95 POSTS0 COMMENTS
Nango Kala
6765 POSTS0 COMMENTS
Nicole Veronica
11916 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11984 POSTS0 COMMENTS
Shaida Kate Naidoo
6889 POSTS0 COMMENTS
Ted Musemwa
7141 POSTS0 COMMENTS
Thapelo Manthata
6836 POSTS0 COMMENTS
Umr Jansen
6839 POSTS0 COMMENTS