Thursday, December 11, 2025
HomeLanguagesscipy stats.genpareto() | Python

scipy stats.genpareto() | Python

scipy.stats.genpareto() is an generalized Pareto continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
-> q : lower and upper tail probability
-> a, b : shape parameters
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : generalized Pareto continuous random variable

Code #1 : Creating generalized Pareto continuous random variable




from scipy.stats import genpareto 
  
numargs = genpareto .numargs
[a] = [0.7, ] * numargs
rv = genpareto (a)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D579B85C0>

Code #2 : generalized Pareto random variates.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = genpareto.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)


Output :

Random Variates : 
 [ 1.55978773  0.03897083  7.68148511  0.78339525  1.1217962   0.20434352
  1.16663003  2.06115353 12.82886098  0.27780119]

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = genpareto.pdf(x, 1, 3)
y2 = genpareto.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32443 POSTS0 COMMENTS
Milvus
105 POSTS0 COMMENTS
Nango Kala
6813 POSTS0 COMMENTS
Nicole Veronica
11950 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12025 POSTS0 COMMENTS
Shaida Kate Naidoo
6944 POSTS0 COMMENTS
Ted Musemwa
7197 POSTS0 COMMENTS
Thapelo Manthata
6889 POSTS0 COMMENTS
Umr Jansen
6881 POSTS0 COMMENTS