Friday, September 26, 2025
HomeLanguagesscipy stats.genlogistic() | Python

scipy stats.genlogistic() | Python

scipy.stats.genlogistic() is an generalized logistic continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
-> q : lower and upper tail probability
-> a, b : shape parameters
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : generalized logistic continuous random variable

Code #1 : Creating generalized logistic continuous random variable




from scipy.stats import genlogistic 
  
numargs = genlogistic .numargs
[a] = [0.7, ] * numargs
rv = genlogistic (a)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D578F4D30>

Code #2 : generalized logistic random variates and probability distribution.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = genlogistic.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = genlogistic.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [-2.25279702 -1.09146871 -0.01100363 -3.95860336  5.07952934 -2.3073455
 -3.11698062 -0.32931819  8.84452349 -3.06546109]

Probability Distribution : 
 [0.00330477 0.03491595 0.06402364 0.09077633 0.11531469 0.13777195
 0.15827427 0.17694109 0.19388545 0.20921433]
 

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = genlogistic.pdf(x, 1, 3)
y2 = genlogistic.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32321 POSTS0 COMMENTS
Milvus
84 POSTS0 COMMENTS
Nango Kala
6687 POSTS0 COMMENTS
Nicole Veronica
11857 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11910 POSTS0 COMMENTS
Shaida Kate Naidoo
6801 POSTS0 COMMENTS
Ted Musemwa
7072 POSTS0 COMMENTS
Thapelo Manthata
6761 POSTS0 COMMENTS
Umr Jansen
6766 POSTS0 COMMENTS