Tuesday, February 3, 2026
HomeLanguagesscipy stats.genhalflogistic() | Python

scipy stats.genhalflogistic() | Python

scipy.stats.genhalflogistic() is an generalized half-logistic continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
-> q : lower and upper tail probability
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> a, b : shape parameters
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : generalized half-logistic continuous random variable

Code #1 : Creating generalized half-logistic continuous random variable




from scipy.stats import genhalflogistic 
  
numargs = genhalflogistic .numargs
[a] = [0.7, ] * numargs
rv = genhalflogistic (a)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001E39A2B2470>

Code #2 : generalized half-logistic random variates and probability distribution




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = genhalflogistic.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = genhalflogistic.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [0.24206874 0.66813269 0.75441313 1.05887305 1.8791025  0.64401048
 2.11419943 0.62545354 1.57690457 1.64762353]

Probability Distribution : 
 [0.44618142 0.47576242 0.50958299 0.54863742 0.59426198 0.64829814
 0.71336075 0.7933007  0.89405304 1.02531554]

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.02915452 0.05830904 0.08746356 0.11661808 0.14577259
 0.17492711 0.20408163 0.23323615 0.26239067 0.29154519 0.32069971
 0.34985423 0.37900875 0.40816327 0.43731778 0.4664723  0.49562682
 0.52478134 0.55393586 0.58309038 0.6122449  0.64139942 0.67055394
 0.69970845 0.72886297 0.75801749 0.78717201 0.81632653 0.84548105
 0.87463557 0.90379009 0.93294461 0.96209913 0.99125364 1.02040816
 1.04956268 1.0787172  1.10787172 1.13702624 1.16618076 1.19533528
 1.2244898  1.25364431 1.28279883 1.31195335 1.34110787 1.37026239
 1.39941691 1.42857143]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = genhalflogistic.pdf(x, a, 1, 3)
y2 = genhalflogistic.pdf(x, a, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32478 POSTS0 COMMENTS
Milvus
124 POSTS0 COMMENTS
Nango Kala
6849 POSTS0 COMMENTS
Nicole Veronica
11980 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12066 POSTS0 COMMENTS
Shaida Kate Naidoo
6987 POSTS0 COMMENTS
Ted Musemwa
7222 POSTS0 COMMENTS
Thapelo Manthata
6935 POSTS0 COMMENTS
Umr Jansen
6919 POSTS0 COMMENTS