Thursday, October 2, 2025
HomeLanguagesscipy stats.fisk() | Python

scipy stats.fisk() | Python

scipy.stats.fisk() is an fisk continuous random variable. It is also known as the log-logistic distribution, and equals the Burr distribution with d == 1 and is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional] location parameter. Default = 0
scale : [optional] scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : fisk continuous random variable

Code #1 : Creating fisk continuous random variable




from scipy.stats import fisk
  
numargs = fisk.numargs
[a] = [0.7, ] * numargs
rv = fisk(a)
  
print ("RV : \n", rv)  


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D568102B0>

Code #2 : fisk random variates and probability distribution.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = fisk.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = fisk.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [7.79438195 3.97977194 3.20802248 3.02623867 9.36996936 8.54462365
 0.47436888 0.4645239  2.1188909  1.49435511]

Probability Distribution : 
 [0.00357142 0.0392706  0.07489491 0.11037659 0.1456485  0.18064439
 0.21529915 0.2495491  0.28333225 0.31658852]
 

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = fisk.pdf(x, 1, 3)
y2 = fisk.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32331 POSTS0 COMMENTS
Milvus
85 POSTS0 COMMENTS
Nango Kala
6703 POSTS0 COMMENTS
Nicole Veronica
11867 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11926 POSTS0 COMMENTS
Shaida Kate Naidoo
6818 POSTS0 COMMENTS
Ted Musemwa
7079 POSTS0 COMMENTS
Thapelo Manthata
6775 POSTS0 COMMENTS
Umr Jansen
6776 POSTS0 COMMENTS