Friday, September 5, 2025
HomeLanguagesscipy stats.fatiguelife() | Python

scipy stats.fatiguelife() | Python

scipy.stats.fatiguelife() is an fatigue-life (Birnbaum-Sanders) continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional] location parameter. Default = 0
scale : [optional] scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : fatigue-life (Birnbaum-Sanders) continuous random variable

Code #1 : Creating fatigue-life continuous random variable




from scipy.stats import fatiguelife
  
numargs = fatiguelife.numargs
[a] = [0.7, ] * numargs
rv = fatiguelife(a)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D567B8400>

Code #2 : fatigue-life random variates and probability distribution.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = fatiguelife.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = fatiguelife.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [ 1.5759368   1.73788302  2.31297609  1.0005871   1.49635022 11.98492239
  2.51785146  4.0096255   0.5654246   0.97502712]

Probability Distribution : 
 [3.74431292e-278 2.59381847e-002 6.41771315e-001 9.56754833e-001
 9.63413710e-001 8.86691481e-001 7.98585419e-001 7.17860186e-001
 6.48103032e-001 5.88743459e-001]
 

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = fatiguelife.pdf(x, 1, 3)
y2 = fatiguelife.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32264 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6634 POSTS0 COMMENTS
Nicole Veronica
11801 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11863 POSTS0 COMMENTS
Shaida Kate Naidoo
6750 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6701 POSTS0 COMMENTS
Umr Jansen
6718 POSTS0 COMMENTS