Friday, January 30, 2026
HomeLanguagesscipy stats.dgamma() | Python

scipy stats.dgamma() | Python

scipy.stats.dgamma () is an double gamma continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : double gamma continuous random variable

Code #1 : Creating double gamma continuous random variable




from scipy.stats import chi 
  
numargs = chi.numargs
[a] = [0.6, ] * numargs
rv = chi(a)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001FDC8AA3940>

Code #2 : double gamma random variates and probability distribution.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = chi.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = chi.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [-1.95099046 -0.92462647 -0.44728222 -1.02853811  0.26525202  0.33532233
 -1.74580986 -0.02263675  0.02631306  0.01852519]

Probability Distribution : 
 [0.00457609 0.05019958 0.09422768 0.13505809 0.1714982  0.20274293
 0.22833692 0.24812679 0.2622088  0.27087564]
 

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]

Code #4 : Varying Positional Arguments




<div class="noIdeBtnDiv">
import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = chi.pdf(x, 1, 6)
y2 = chi.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32478 POSTS0 COMMENTS
Milvus
122 POSTS0 COMMENTS
Nango Kala
6849 POSTS0 COMMENTS
Nicole Veronica
11978 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12065 POSTS0 COMMENTS
Shaida Kate Naidoo
6986 POSTS0 COMMENTS
Ted Musemwa
7222 POSTS0 COMMENTS
Thapelo Manthata
6934 POSTS0 COMMENTS
Umr Jansen
6917 POSTS0 COMMENTS