scipy.stats.cumfreq(a, numbins, defaultreallimits, weights) works using the histogram function and calculates the cumulative frequency histogram. It includes cumulative frequency binned values, width of each bin, lower real limit, extra points.
Parameters :
arr : [array_like] input array.
numbins : [int] number of bins to use for the histogram. [Default = 10]
defaultlimits : (lower, upper) range of the histogram.
weights : [array_like] weights for each array element.
Results :
– cumulative frequency binned values
– width of each bin
– lower real limit
– extra points.
Code #1:
Python3
| # cumulative frequency fromscipy importstats importnumpy as np    arr1 =[1, 3, 27, 2, 5, 13]  print("Array element : ", arr1, "\n")   a, b, c, d =stats.cumfreq(arr1, numbins =4)   print("cumulative frequency : ", a) print("Lower Limit : ", b) print("bin size : ", c) print("extra-points : ", d) | 
Array element : [1, 3, 27, 2, 5, 13] cumulative frequency : [ 4. 5. 5. 6.] Lower Limit : -3.33333333333 bin size : 8.66666666667 extra-points : 0
Code #2:
Python3
| # cumulative frequency fromscipy importstats importnumpy as np    arr1 =[1, 3, 27, 2, 5, 13]  print("Array element : ", arr1, "\n")   a, b, c, d =stats.cumfreq(arr1, numbins =4,               weights =[.1, .2, .1, .3, 1, 6])   print("cumfreqs : ", a) print("lowlim : ", b) print("binsize : ", c) print("extrapoints : ", d) | 
Array element : [1, 3, 27, 2, 5, 13] cumfreqs : [ 1.6 7.6 7.6 7.7] lowlim : -3.33333333333 binsize : 8.66666666667 extrapoints : 0

 
                                    







